| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499 | 
							- /* dhgeqz.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b12 = 0.;
 
- static doublereal c_b13 = 1.;
 
- static integer c__1 = 1;
 
- static integer c__3 = 3;
 
- /* Subroutine */ int _starpu_dhgeqz_(char *job, char *compq, char *compz, integer *n, 
 
- 	integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal 
 
- 	*t, integer *ldt, doublereal *alphar, doublereal *alphai, doublereal *
 
- 	beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, 
 
- 	doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1, 
 
- 	    z_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal c__;
 
-     integer j;
 
-     doublereal s, v[3], s1, s2, t1, u1, u2, a11, a12, a21, a22, b11, b22, c12,
 
- 	     c21;
 
-     integer jc;
 
-     doublereal an, bn, cl, cq, cr;
 
-     integer in;
 
-     doublereal u12, w11, w12, w21;
 
-     integer jr;
 
-     doublereal cz, w22, sl, wi, sr, vs, wr, b1a, b2a, a1i, a2i, b1i, b2i, a1r,
 
- 	     a2r, b1r, b2r, wr2, ad11, ad12, ad21, ad22, c11i, c22i;
 
-     integer jch;
 
-     doublereal c11r, c22r;
 
-     logical ilq;
 
-     doublereal u12l, tau, sqi;
 
-     logical ilz;
 
-     doublereal ulp, sqr, szi, szr, ad11l, ad12l, ad21l, ad22l, ad32l, wabs, 
 
- 	    atol, btol, temp;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dlag2_(
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *);
 
-     doublereal temp2, s1inv, scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iiter, ilast, jiter;
 
-     doublereal anorm, bnorm;
 
-     integer maxit;
 
-     doublereal tempi, tempr;
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlapy3_(doublereal 
 
- 	    *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlasv2_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     logical ilazr2;
 
-     doublereal ascale, bscale;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_dlarfg_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *);
 
-     extern doublereal _starpu_dlanhs_(char *, integer *, doublereal *, integer *, 
 
- 	    doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     doublereal safmax;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal eshift;
 
-     logical ilschr;
 
-     integer icompq, ilastm, ischur;
 
-     logical ilazro;
 
-     integer icompz, ifirst, ifrstm, istart;
 
-     logical ilpivt, lquery;
 
- /*  -- LAPACK routine (version 3.2.1)                                  -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*  -- April 2009                                                      -- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
 
- /*  where H is an upper Hessenberg matrix and T is upper triangular, */
 
- /*  using the double-shift QZ method. */
 
- /*  Matrix pairs of this type are produced by the reduction to */
 
- /*  generalized upper Hessenberg form of a real matrix pair (A,B): */
 
- /*     A = Q1*H*Z1**T,  B = Q1*T*Z1**T, */
 
- /*  as computed by DGGHRD. */
 
- /*  If JOB='S', then the Hessenberg-triangular pair (H,T) is */
 
- /*  also reduced to generalized Schur form, */
 
- /*     H = Q*S*Z**T,  T = Q*P*Z**T, */
 
- /*  where Q and Z are orthogonal matrices, P is an upper triangular */
 
- /*  matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
 
- /*  diagonal blocks. */
 
- /*  The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
 
- /*  (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
 
- /*  eigenvalues. */
 
- /*  Additionally, the 2-by-2 upper triangular diagonal blocks of P */
 
- /*  corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
 
- /*  form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
 
- /*  P(j,j) > 0, and P(j+1,j+1) > 0. */
 
- /*  Optionally, the orthogonal matrix Q from the generalized Schur */
 
- /*  factorization may be postmultiplied into an input matrix Q1, and the */
 
- /*  orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
 
- /*  If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced */
 
- /*  the matrix pair (A,B) to generalized upper Hessenberg form, then the */
 
- /*  output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
 
- /*  generalized Schur factorization of (A,B): */
 
- /*     A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T. */
 
- /*  To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
 
- /*  of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
 
- /*  complex and beta real. */
 
- /*  If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
 
- /*  generalized nonsymmetric eigenvalue problem (GNEP) */
 
- /*     A*x = lambda*B*x */
 
- /*  and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
 
- /*  alternate form of the GNEP */
 
- /*     mu*A*y = B*y. */
 
- /*  Real eigenvalues can be read directly from the generalized Schur */
 
- /*  form: */
 
- /*    alpha = S(i,i), beta = P(i,i). */
 
- /*  Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
 
- /*       Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
 
- /*       pp. 241--256. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) CHARACTER*1 */
 
- /*          = 'E': Compute eigenvalues only; */
 
- /*          = 'S': Compute eigenvalues and the Schur form. */
 
- /*  COMPQ   (input) CHARACTER*1 */
 
- /*          = 'N': Left Schur vectors (Q) are not computed; */
 
- /*          = 'I': Q is initialized to the unit matrix and the matrix Q */
 
- /*                 of left Schur vectors of (H,T) is returned; */
 
- /*          = 'V': Q must contain an orthogonal matrix Q1 on entry and */
 
- /*                 the product Q1*Q is returned. */
 
- /*  COMPZ   (input) CHARACTER*1 */
 
- /*          = 'N': Right Schur vectors (Z) are not computed; */
 
- /*          = 'I': Z is initialized to the unit matrix and the matrix Z */
 
- /*                 of right Schur vectors of (H,T) is returned; */
 
- /*          = 'V': Z must contain an orthogonal matrix Z1 on entry and */
 
- /*                 the product Z1*Z is returned. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices H, T, Q, and Z.  N >= 0. */
 
- /*  ILO     (input) INTEGER */
 
- /*  IHI     (input) INTEGER */
 
- /*          ILO and IHI mark the rows and columns of H which are in */
 
- /*          Hessenberg form.  It is assumed that A is already upper */
 
- /*          triangular in rows and columns 1:ILO-1 and IHI+1:N. */
 
- /*          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
 
- /*  H       (input/output) DOUBLE PRECISION array, dimension (LDH, N) */
 
- /*          On entry, the N-by-N upper Hessenberg matrix H. */
 
- /*          On exit, if JOB = 'S', H contains the upper quasi-triangular */
 
- /*          matrix S from the generalized Schur factorization; */
 
- /*          2-by-2 diagonal blocks (corresponding to complex conjugate */
 
- /*          pairs of eigenvalues) are returned in standard form, with */
 
- /*          H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. */
 
- /*          If JOB = 'E', the diagonal blocks of H match those of S, but */
 
- /*          the rest of H is unspecified. */
 
- /*  LDH     (input) INTEGER */
 
- /*          The leading dimension of the array H.  LDH >= max( 1, N ). */
 
- /*  T       (input/output) DOUBLE PRECISION array, dimension (LDT, N) */
 
- /*          On entry, the N-by-N upper triangular matrix T. */
 
- /*          On exit, if JOB = 'S', T contains the upper triangular */
 
- /*          matrix P from the generalized Schur factorization; */
 
- /*          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
 
- /*          are reduced to positive diagonal form, i.e., if H(j+1,j) is */
 
- /*          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
 
- /*          T(j+1,j+1) > 0. */
 
- /*          If JOB = 'E', the diagonal blocks of T match those of P, but */
 
- /*          the rest of T is unspecified. */
 
- /*  LDT     (input) INTEGER */
 
- /*          The leading dimension of the array T.  LDT >= max( 1, N ). */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The real parts of each scalar alpha defining an eigenvalue */
 
- /*          of GNEP. */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The imaginary parts of each scalar alpha defining an */
 
- /*          eigenvalue of GNEP. */
 
- /*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 
- /*          positive, then the j-th and (j+1)-st eigenvalues are a */
 
- /*          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The scalars beta that define the eigenvalues of GNEP. */
 
- /*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 
- /*          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 
- /*          pair (A,B), in one of the forms lambda = alpha/beta or */
 
- /*          mu = beta/alpha.  Since either lambda or mu may overflow, */
 
- /*          they should not, in general, be computed. */
 
- /*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
 
- /*          On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in */
 
- /*          the reduction of (A,B) to generalized Hessenberg form. */
 
- /*          On exit, if COMPZ = 'I', the orthogonal matrix of left Schur */
 
- /*          vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix */
 
- /*          of left Schur vectors of (A,B). */
 
- /*          Not referenced if COMPZ = 'N'. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q.  LDQ >= 1. */
 
- /*          If COMPQ='V' or 'I', then LDQ >= N. */
 
- /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
 
- /*          the reduction of (A,B) to generalized Hessenberg form. */
 
- /*          On exit, if COMPZ = 'I', the orthogonal matrix of */
 
- /*          right Schur vectors of (H,T), and if COMPZ = 'V', the */
 
- /*          orthogonal matrix of right Schur vectors of (A,B). */
 
- /*          Not referenced if COMPZ = 'N'. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1. */
 
- /*          If COMPZ='V' or 'I', then LDZ >= N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,N). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          = 1,...,N: the QZ iteration did not converge.  (H,T) is not */
 
- /*                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 
- /*                     BETA(i), i=INFO+1,...,N should be correct. */
 
- /*          = N+1,...,2*N: the shift calculation failed.  (H,T) is not */
 
- /*                     in Schur form, but ALPHAR(i), ALPHAI(i), and */
 
- /*                     BETA(i), i=INFO-N+1,...,N should be correct. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Iteration counters: */
 
- /*  JITER  -- counts iterations. */
 
- /*  IITER  -- counts iterations run since ILAST was last */
 
- /*            changed.  This is therefore reset only when a 1-by-1 or */
 
- /*            2-by-2 block deflates off the bottom. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*    $                     SAFETY = 1.0E+0 ) */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode JOB, COMPQ, COMPZ */
 
-     /* Parameter adjustments */
 
-     h_dim1 = *ldh;
 
-     h_offset = 1 + h_dim1;
 
-     h__ -= h_offset;
 
-     t_dim1 = *ldt;
 
-     t_offset = 1 + t_dim1;
 
-     t -= t_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     /* Function Body */
 
-     if (_starpu_lsame_(job, "E")) {
 
- 	ilschr = FALSE_;
 
- 	ischur = 1;
 
-     } else if (_starpu_lsame_(job, "S")) {
 
- 	ilschr = TRUE_;
 
- 	ischur = 2;
 
-     } else {
 
- 	ischur = 0;
 
-     }
 
-     if (_starpu_lsame_(compq, "N")) {
 
- 	ilq = FALSE_;
 
- 	icompq = 1;
 
-     } else if (_starpu_lsame_(compq, "V")) {
 
- 	ilq = TRUE_;
 
- 	icompq = 2;
 
-     } else if (_starpu_lsame_(compq, "I")) {
 
- 	ilq = TRUE_;
 
- 	icompq = 3;
 
-     } else {
 
- 	icompq = 0;
 
-     }
 
-     if (_starpu_lsame_(compz, "N")) {
 
- 	ilz = FALSE_;
 
- 	icompz = 1;
 
-     } else if (_starpu_lsame_(compz, "V")) {
 
- 	ilz = TRUE_;
 
- 	icompz = 2;
 
-     } else if (_starpu_lsame_(compz, "I")) {
 
- 	ilz = TRUE_;
 
- 	icompz = 3;
 
-     } else {
 
- 	icompz = 0;
 
-     }
 
- /*     Check Argument Values */
 
-     *info = 0;
 
-     work[1] = (doublereal) max(1,*n);
 
-     lquery = *lwork == -1;
 
-     if (ischur == 0) {
 
- 	*info = -1;
 
-     } else if (icompq == 0) {
 
- 	*info = -2;
 
-     } else if (icompz == 0) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*ilo < 1) {
 
- 	*info = -5;
 
-     } else if (*ihi > *n || *ihi < *ilo - 1) {
 
- 	*info = -6;
 
-     } else if (*ldh < *n) {
 
- 	*info = -8;
 
-     } else if (*ldt < *n) {
 
- 	*info = -10;
 
-     } else if (*ldq < 1 || ilq && *ldq < *n) {
 
- 	*info = -15;
 
-     } else if (*ldz < 1 || ilz && *ldz < *n) {
 
- 	*info = -17;
 
-     } else if (*lwork < max(1,*n) && ! lquery) {
 
- 	*info = -19;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DHGEQZ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n <= 0) {
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
- /*     Initialize Q and Z */
 
-     if (icompq == 3) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
 
-     }
 
-     if (icompz == 3) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
 
-     }
 
- /*     Machine Constants */
 
-     in = *ihi + 1 - *ilo;
 
-     safmin = _starpu_dlamch_("S");
 
-     safmax = 1. / safmin;
 
-     ulp = _starpu_dlamch_("E") * _starpu_dlamch_("B");
 
-     anorm = _starpu_dlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
 
-     bnorm = _starpu_dlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
 
- /* Computing MAX */
 
-     d__1 = safmin, d__2 = ulp * anorm;
 
-     atol = max(d__1,d__2);
 
- /* Computing MAX */
 
-     d__1 = safmin, d__2 = ulp * bnorm;
 
-     btol = max(d__1,d__2);
 
-     ascale = 1. / max(safmin,anorm);
 
-     bscale = 1. / max(safmin,bnorm);
 
- /*     Set Eigenvalues IHI+1:N */
 
-     i__1 = *n;
 
-     for (j = *ihi + 1; j <= i__1; ++j) {
 
- 	if (t[j + j * t_dim1] < 0.) {
 
- 	    if (ilschr) {
 
- 		i__2 = j;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 
- 		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 
- /* L10: */
 
- 		}
 
- 	    } else {
 
- 		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 
- 		t[j + j * t_dim1] = -t[j + j * t_dim1];
 
- 	    }
 
- 	    if (ilz) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 
- /* L20: */
 
- 		}
 
- 	    }
 
- 	}
 
- 	alphar[j] = h__[j + j * h_dim1];
 
- 	alphai[j] = 0.;
 
- 	beta[j] = t[j + j * t_dim1];
 
- /* L30: */
 
-     }
 
- /*     If IHI < ILO, skip QZ steps */
 
-     if (*ihi < *ilo) {
 
- 	goto L380;
 
-     }
 
- /*     MAIN QZ ITERATION LOOP */
 
- /*     Initialize dynamic indices */
 
- /*     Eigenvalues ILAST+1:N have been found. */
 
- /*        Column operations modify rows IFRSTM:whatever. */
 
- /*        Row operations modify columns whatever:ILASTM. */
 
- /*     If only eigenvalues are being computed, then */
 
- /*        IFRSTM is the row of the last splitting row above row ILAST; */
 
- /*        this is always at least ILO. */
 
- /*     IITER counts iterations since the last eigenvalue was found, */
 
- /*        to tell when to use an extraordinary shift. */
 
- /*     MAXIT is the maximum number of QZ sweeps allowed. */
 
-     ilast = *ihi;
 
-     if (ilschr) {
 
- 	ifrstm = 1;
 
- 	ilastm = *n;
 
-     } else {
 
- 	ifrstm = *ilo;
 
- 	ilastm = *ihi;
 
-     }
 
-     iiter = 0;
 
-     eshift = 0.;
 
-     maxit = (*ihi - *ilo + 1) * 30;
 
-     i__1 = maxit;
 
-     for (jiter = 1; jiter <= i__1; ++jiter) {
 
- /*        Split the matrix if possible. */
 
- /*        Two tests: */
 
- /*           1: H(j,j-1)=0  or  j=ILO */
 
- /*           2: T(j,j)=0 */
 
- 	if (ilast == *ilo) {
 
- /*           Special case: j=ILAST */
 
- 	    goto L80;
 
- 	} else {
 
- 	    if ((d__1 = h__[ilast + (ilast - 1) * h_dim1], abs(d__1)) <= atol)
 
- 		     {
 
- 		h__[ilast + (ilast - 1) * h_dim1] = 0.;
 
- 		goto L80;
 
- 	    }
 
- 	}
 
- 	if ((d__1 = t[ilast + ilast * t_dim1], abs(d__1)) <= btol) {
 
- 	    t[ilast + ilast * t_dim1] = 0.;
 
- 	    goto L70;
 
- 	}
 
- /*        General case: j<ILAST */
 
- 	i__2 = *ilo;
 
- 	for (j = ilast - 1; j >= i__2; --j) {
 
- /*           Test 1: for H(j,j-1)=0 or j=ILO */
 
- 	    if (j == *ilo) {
 
- 		ilazro = TRUE_;
 
- 	    } else {
 
- 		if ((d__1 = h__[j + (j - 1) * h_dim1], abs(d__1)) <= atol) {
 
- 		    h__[j + (j - 1) * h_dim1] = 0.;
 
- 		    ilazro = TRUE_;
 
- 		} else {
 
- 		    ilazro = FALSE_;
 
- 		}
 
- 	    }
 
- /*           Test 2: for T(j,j)=0 */
 
- 	    if ((d__1 = t[j + j * t_dim1], abs(d__1)) < btol) {
 
- 		t[j + j * t_dim1] = 0.;
 
- /*              Test 1a: Check for 2 consecutive small subdiagonals in A */
 
- 		ilazr2 = FALSE_;
 
- 		if (! ilazro) {
 
- 		    temp = (d__1 = h__[j + (j - 1) * h_dim1], abs(d__1));
 
- 		    temp2 = (d__1 = h__[j + j * h_dim1], abs(d__1));
 
- 		    tempr = max(temp,temp2);
 
- 		    if (tempr < 1. && tempr != 0.) {
 
- 			temp /= tempr;
 
- 			temp2 /= tempr;
 
- 		    }
 
- 		    if (temp * (ascale * (d__1 = h__[j + 1 + j * h_dim1], abs(
 
- 			    d__1))) <= temp2 * (ascale * atol)) {
 
- 			ilazr2 = TRUE_;
 
- 		    }
 
- 		}
 
- /*              If both tests pass (1 & 2), i.e., the leading diagonal */
 
- /*              element of B in the block is zero, split a 1x1 block off */
 
- /*              at the top. (I.e., at the J-th row/column) The leading */
 
- /*              diagonal element of the remainder can also be zero, so */
 
- /*              this may have to be done repeatedly. */
 
- 		if (ilazro || ilazr2) {
 
- 		    i__3 = ilast - 1;
 
- 		    for (jch = j; jch <= i__3; ++jch) {
 
- 			temp = h__[jch + jch * h_dim1];
 
- 			_starpu_dlartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s, 
 
- 				 &h__[jch + jch * h_dim1]);
 
- 			h__[jch + 1 + jch * h_dim1] = 0.;
 
- 			i__4 = ilastm - jch;
 
- 			_starpu_drot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
 
- 				h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__, 
 
- 				&s);
 
- 			i__4 = ilastm - jch;
 
- 			_starpu_drot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
 
- 				jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
 
- 			if (ilq) {
 
- 			    _starpu_drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 
- 				     * q_dim1 + 1], &c__1, &c__, &s);
 
- 			}
 
- 			if (ilazr2) {
 
- 			    h__[jch + (jch - 1) * h_dim1] *= c__;
 
- 			}
 
- 			ilazr2 = FALSE_;
 
- 			if ((d__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(d__1)
 
- 				) >= btol) {
 
- 			    if (jch + 1 >= ilast) {
 
- 				goto L80;
 
- 			    } else {
 
- 				ifirst = jch + 1;
 
- 				goto L110;
 
- 			    }
 
- 			}
 
- 			t[jch + 1 + (jch + 1) * t_dim1] = 0.;
 
- /* L40: */
 
- 		    }
 
- 		    goto L70;
 
- 		} else {
 
- /*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
 
- /*                 Then process as in the case T(ILAST,ILAST)=0 */
 
- 		    i__3 = ilast - 1;
 
- 		    for (jch = j; jch <= i__3; ++jch) {
 
- 			temp = t[jch + (jch + 1) * t_dim1];
 
- 			_starpu_dlartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__, 
 
- 				 &s, &t[jch + (jch + 1) * t_dim1]);
 
- 			t[jch + 1 + (jch + 1) * t_dim1] = 0.;
 
- 			if (jch < ilastm - 1) {
 
- 			    i__4 = ilastm - jch - 1;
 
- 			    _starpu_drot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
 
- 				    t[jch + 1 + (jch + 2) * t_dim1], ldt, &
 
- 				    c__, &s);
 
- 			}
 
- 			i__4 = ilastm - jch + 2;
 
- 			_starpu_drot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
 
- 				h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__, 
 
- 				&s);
 
- 			if (ilq) {
 
- 			    _starpu_drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
 
- 				     * q_dim1 + 1], &c__1, &c__, &s);
 
- 			}
 
- 			temp = h__[jch + 1 + jch * h_dim1];
 
- 			_starpu_dlartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
 
- 				c__, &s, &h__[jch + 1 + jch * h_dim1]);
 
- 			h__[jch + 1 + (jch - 1) * h_dim1] = 0.;
 
- 			i__4 = jch + 1 - ifrstm;
 
- 			_starpu_drot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
 
- 				ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
 
- 				;
 
- 			i__4 = jch - ifrstm;
 
- 			_starpu_drot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
 
- 				ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
 
- 				;
 
- 			if (ilz) {
 
- 			    _starpu_drot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch 
 
- 				    - 1) * z_dim1 + 1], &c__1, &c__, &s);
 
- 			}
 
- /* L50: */
 
- 		    }
 
- 		    goto L70;
 
- 		}
 
- 	    } else if (ilazro) {
 
- /*              Only test 1 passed -- work on J:ILAST */
 
- 		ifirst = j;
 
- 		goto L110;
 
- 	    }
 
- /*           Neither test passed -- try next J */
 
- /* L60: */
 
- 	}
 
- /*        (Drop-through is "impossible") */
 
- 	*info = *n + 1;
 
- 	goto L420;
 
- /*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
 
- /*        1x1 block. */
 
- L70:
 
- 	temp = h__[ilast + ilast * h_dim1];
 
- 	_starpu_dlartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
 
- 		ilast + ilast * h_dim1]);
 
- 	h__[ilast + (ilast - 1) * h_dim1] = 0.;
 
- 	i__2 = ilast - ifrstm;
 
- 	_starpu_drot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
 
- 		ilast - 1) * h_dim1], &c__1, &c__, &s);
 
- 	i__2 = ilast - ifrstm;
 
- 	_starpu_drot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast - 
 
- 		1) * t_dim1], &c__1, &c__, &s);
 
- 	if (ilz) {
 
- 	    _starpu_drot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) * 
 
- 		    z_dim1 + 1], &c__1, &c__, &s);
 
- 	}
 
- /*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
 
- /*                              and BETA */
 
- L80:
 
- 	if (t[ilast + ilast * t_dim1] < 0.) {
 
- 	    if (ilschr) {
 
- 		i__2 = ilast;
 
- 		for (j = ifrstm; j <= i__2; ++j) {
 
- 		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 
- 		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 
- /* L90: */
 
- 		}
 
- 	    } else {
 
- 		h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
 
- 		t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
 
- 	    }
 
- 	    if (ilz) {
 
- 		i__2 = *n;
 
- 		for (j = 1; j <= i__2; ++j) {
 
- 		    z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 
- /* L100: */
 
- 		}
 
- 	    }
 
- 	}
 
- 	alphar[ilast] = h__[ilast + ilast * h_dim1];
 
- 	alphai[ilast] = 0.;
 
- 	beta[ilast] = t[ilast + ilast * t_dim1];
 
- /*        Go to next block -- exit if finished. */
 
- 	--ilast;
 
- 	if (ilast < *ilo) {
 
- 	    goto L380;
 
- 	}
 
- /*        Reset counters */
 
- 	iiter = 0;
 
- 	eshift = 0.;
 
- 	if (! ilschr) {
 
- 	    ilastm = ilast;
 
- 	    if (ifrstm > ilast) {
 
- 		ifrstm = *ilo;
 
- 	    }
 
- 	}
 
- 	goto L350;
 
- /*        QZ step */
 
- /*        This iteration only involves rows/columns IFIRST:ILAST. We */
 
- /*        assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
 
- L110:
 
- 	++iiter;
 
- 	if (! ilschr) {
 
- 	    ifrstm = ifirst;
 
- 	}
 
- /*        Compute single shifts. */
 
- /*        At this point, IFIRST < ILAST, and the diagonal elements of */
 
- /*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
 
- /*        magnitude) */
 
- 	if (iiter / 10 * 10 == iiter) {
 
- /*           Exceptional shift.  Chosen for no particularly good reason. */
 
- /*           (Single shift only.) */
 
- 	    if ((doublereal) maxit * safmin * (d__1 = h__[ilast - 1 + ilast * 
 
- 		    h_dim1], abs(d__1)) < (d__2 = t[ilast - 1 + (ilast - 1) * 
 
- 		    t_dim1], abs(d__2))) {
 
- 		eshift += h__[ilast - 1 + ilast * h_dim1] / t[ilast - 1 + (
 
- 			ilast - 1) * t_dim1];
 
- 	    } else {
 
- 		eshift += 1. / (safmin * (doublereal) maxit);
 
- 	    }
 
- 	    s1 = 1.;
 
- 	    wr = eshift;
 
- 	} else {
 
- /*           Shifts based on the generalized eigenvalues of the */
 
- /*           bottom-right 2x2 block of A and B. The first eigenvalue */
 
- /*           returned by DLAG2 is the Wilkinson shift (AEP p.512), */
 
- 	    d__1 = safmin * 100.;
 
- 	    _starpu_dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 
- 		    + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &s2, &wr, &wr2, 
 
- 		    &wi);
 
- /* Computing MAX */
 
- /* Computing MAX */
 
- 	    d__3 = 1., d__4 = abs(wr), d__3 = max(d__3,d__4), d__4 = abs(wi);
 
- 	    d__1 = s1, d__2 = safmin * max(d__3,d__4);
 
- 	    temp = max(d__1,d__2);
 
- 	    if (wi != 0.) {
 
- 		goto L200;
 
- 	    }
 
- 	}
 
- /*        Fiddle with shift to avoid overflow */
 
- 	temp = min(ascale,1.) * (safmax * .5);
 
- 	if (s1 > temp) {
 
- 	    scale = temp / s1;
 
- 	} else {
 
- 	    scale = 1.;
 
- 	}
 
- 	temp = min(bscale,1.) * (safmax * .5);
 
- 	if (abs(wr) > temp) {
 
- /* Computing MIN */
 
- 	    d__1 = scale, d__2 = temp / abs(wr);
 
- 	    scale = min(d__1,d__2);
 
- 	}
 
- 	s1 = scale * s1;
 
- 	wr = scale * wr;
 
- /*        Now check for two consecutive small subdiagonals. */
 
- 	i__2 = ifirst + 1;
 
- 	for (j = ilast - 1; j >= i__2; --j) {
 
- 	    istart = j;
 
- 	    temp = (d__1 = s1 * h__[j + (j - 1) * h_dim1], abs(d__1));
 
- 	    temp2 = (d__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
 
- 		     abs(d__1));
 
- 	    tempr = max(temp,temp2);
 
- 	    if (tempr < 1. && tempr != 0.) {
 
- 		temp /= tempr;
 
- 		temp2 /= tempr;
 
- 	    }
 
- 	    if ((d__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(d__1)) <=
 
- 		     ascale * atol * temp2) {
 
- 		goto L130;
 
- 	    }
 
- /* L120: */
 
- 	}
 
- 	istart = ifirst;
 
- L130:
 
- /*        Do an implicit single-shift QZ sweep. */
 
- /*        Initial Q */
 
- 	temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart * 
 
- 		t_dim1];
 
- 	temp2 = s1 * h__[istart + 1 + istart * h_dim1];
 
- 	_starpu_dlartg_(&temp, &temp2, &c__, &s, &tempr);
 
- /*        Sweep */
 
- 	i__2 = ilast - 1;
 
- 	for (j = istart; j <= i__2; ++j) {
 
- 	    if (j > istart) {
 
- 		temp = h__[j + (j - 1) * h_dim1];
 
- 		_starpu_dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
 
- 			j + (j - 1) * h_dim1]);
 
- 		h__[j + 1 + (j - 1) * h_dim1] = 0.;
 
- 	    }
 
- 	    i__3 = ilastm;
 
- 	    for (jc = j; jc <= i__3; ++jc) {
 
- 		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 
- 			h_dim1];
 
- 		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 
- 			h__[j + 1 + jc * h_dim1];
 
- 		h__[j + jc * h_dim1] = temp;
 
- 		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 
- 		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 
- 			+ 1 + jc * t_dim1];
 
- 		t[j + jc * t_dim1] = temp2;
 
- /* L140: */
 
- 	    }
 
- 	    if (ilq) {
 
- 		i__3 = *n;
 
- 		for (jr = 1; jr <= i__3; ++jr) {
 
- 		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 
- 			    q_dim1];
 
- 		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 
- 			     q[jr + (j + 1) * q_dim1];
 
- 		    q[jr + j * q_dim1] = temp;
 
- /* L150: */
 
- 		}
 
- 	    }
 
- 	    temp = t[j + 1 + (j + 1) * t_dim1];
 
- 	    _starpu_dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 
- 		    1) * t_dim1]);
 
- 	    t[j + 1 + j * t_dim1] = 0.;
 
- /* Computing MIN */
 
- 	    i__4 = j + 2;
 
- 	    i__3 = min(i__4,ilast);
 
- 	    for (jr = ifrstm; jr <= i__3; ++jr) {
 
- 		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 
- 			h_dim1];
 
- 		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 
- 			 h__[jr + j * h_dim1];
 
- 		h__[jr + (j + 1) * h_dim1] = temp;
 
- /* L160: */
 
- 	    }
 
- 	    i__3 = j;
 
- 	    for (jr = ifrstm; jr <= i__3; ++jr) {
 
- 		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 
- 			;
 
- 		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 
- 			jr + j * t_dim1];
 
- 		t[jr + (j + 1) * t_dim1] = temp;
 
- /* L170: */
 
- 	    }
 
- 	    if (ilz) {
 
- 		i__3 = *n;
 
- 		for (jr = 1; jr <= i__3; ++jr) {
 
- 		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 
- 			     z_dim1];
 
- 		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 
- 			    c__ * z__[jr + j * z_dim1];
 
- 		    z__[jr + (j + 1) * z_dim1] = temp;
 
- /* L180: */
 
- 		}
 
- 	    }
 
- /* L190: */
 
- 	}
 
- 	goto L350;
 
- /*        Use Francis double-shift */
 
- /*        Note: the Francis double-shift should work with real shifts, */
 
- /*              but only if the block is at least 3x3. */
 
- /*              This code may break if this point is reached with */
 
- /*              a 2x2 block with real eigenvalues. */
 
- L200:
 
- 	if (ifirst + 1 == ilast) {
 
- /*           Special case -- 2x2 block with complex eigenvectors */
 
- /*           Step 1: Standardize, that is, rotate so that */
 
- /*                       ( B11  0  ) */
 
- /*                   B = (         )  with B11 non-negative. */
 
- /*                       (  0  B22 ) */
 
- 	    _starpu_dlasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 + 
 
- 		    ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
 
- 		    sr, &cr, &sl, &cl);
 
- 	    if (b11 < 0.) {
 
- 		cr = -cr;
 
- 		sr = -sr;
 
- 		b11 = -b11;
 
- 		b22 = -b22;
 
- 	    }
 
- 	    i__2 = ilastm + 1 - ifirst;
 
- 	    _starpu_drot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
 
- 		    ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
 
- 	    i__2 = ilast + 1 - ifrstm;
 
- 	    _starpu_drot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
 
- 		    ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
 
- 	    if (ilast < ilastm) {
 
- 		i__2 = ilastm - ilast;
 
- 		_starpu_drot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
 
- 			ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
 
- 	    }
 
- 	    if (ifrstm < ilast - 1) {
 
- 		i__2 = ifirst - ifrstm;
 
- 		_starpu_drot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
 
- 			ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
 
- 	    }
 
- 	    if (ilq) {
 
- 		_starpu_drot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast * 
 
- 			q_dim1 + 1], &c__1, &cl, &sl);
 
- 	    }
 
- 	    if (ilz) {
 
- 		_starpu_drot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast * 
 
- 			z_dim1 + 1], &c__1, &cr, &sr);
 
- 	    }
 
- 	    t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
 
- 	    t[ilast - 1 + ilast * t_dim1] = 0.;
 
- 	    t[ilast + (ilast - 1) * t_dim1] = 0.;
 
- 	    t[ilast + ilast * t_dim1] = b22;
 
- /*           If B22 is negative, negate column ILAST */
 
- 	    if (b22 < 0.) {
 
- 		i__2 = ilast;
 
- 		for (j = ifrstm; j <= i__2; ++j) {
 
- 		    h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
 
- 		    t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
 
- /* L210: */
 
- 		}
 
- 		if (ilz) {
 
- 		    i__2 = *n;
 
- 		    for (j = 1; j <= i__2; ++j) {
 
- 			z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
 
- /* L220: */
 
- 		    }
 
- 		}
 
- 	    }
 
- /*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
 
- /*           Recompute shift */
 
- 	    d__1 = safmin * 100.;
 
- 	    _starpu_dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1 
 
- 		    + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &temp, &wr, &
 
- 		    temp2, &wi);
 
- /*           If standardization has perturbed the shift onto real line, */
 
- /*           do another (real single-shift) QR step. */
 
- 	    if (wi == 0.) {
 
- 		goto L350;
 
- 	    }
 
- 	    s1inv = 1. / s1;
 
- /*           Do EISPACK (QZVAL) computation of alpha and beta */
 
- 	    a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
 
- 	    a21 = h__[ilast + (ilast - 1) * h_dim1];
 
- 	    a12 = h__[ilast - 1 + ilast * h_dim1];
 
- 	    a22 = h__[ilast + ilast * h_dim1];
 
- /*           Compute complex Givens rotation on right */
 
- /*           (Assume some element of C = (sA - wB) > unfl ) */
 
- /*                            __ */
 
- /*           (sA - wB) ( CZ   -SZ ) */
 
- /*                     ( SZ    CZ ) */
 
- 	    c11r = s1 * a11 - wr * b11;
 
- 	    c11i = -wi * b11;
 
- 	    c12 = s1 * a12;
 
- 	    c21 = s1 * a21;
 
- 	    c22r = s1 * a22 - wr * b22;
 
- 	    c22i = -wi * b22;
 
- 	    if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
 
- 		    c22i)) {
 
- 		t1 = _starpu_dlapy3_(&c12, &c11r, &c11i);
 
- 		cz = c12 / t1;
 
- 		szr = -c11r / t1;
 
- 		szi = -c11i / t1;
 
- 	    } else {
 
- 		cz = _starpu_dlapy2_(&c22r, &c22i);
 
- 		if (cz <= safmin) {
 
- 		    cz = 0.;
 
- 		    szr = 1.;
 
- 		    szi = 0.;
 
- 		} else {
 
- 		    tempr = c22r / cz;
 
- 		    tempi = c22i / cz;
 
- 		    t1 = _starpu_dlapy2_(&cz, &c21);
 
- 		    cz /= t1;
 
- 		    szr = -c21 * tempr / t1;
 
- 		    szi = c21 * tempi / t1;
 
- 		}
 
- 	    }
 
- /*           Compute Givens rotation on left */
 
- /*           (  CQ   SQ ) */
 
- /*           (  __      )  A or B */
 
- /*           ( -SQ   CQ ) */
 
- 	    an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
 
- 	    bn = abs(b11) + abs(b22);
 
- 	    wabs = abs(wr) + abs(wi);
 
- 	    if (s1 * an > wabs * bn) {
 
- 		cq = cz * b11;
 
- 		sqr = szr * b22;
 
- 		sqi = -szi * b22;
 
- 	    } else {
 
- 		a1r = cz * a11 + szr * a12;
 
- 		a1i = szi * a12;
 
- 		a2r = cz * a21 + szr * a22;
 
- 		a2i = szi * a22;
 
- 		cq = _starpu_dlapy2_(&a1r, &a1i);
 
- 		if (cq <= safmin) {
 
- 		    cq = 0.;
 
- 		    sqr = 1.;
 
- 		    sqi = 0.;
 
- 		} else {
 
- 		    tempr = a1r / cq;
 
- 		    tempi = a1i / cq;
 
- 		    sqr = tempr * a2r + tempi * a2i;
 
- 		    sqi = tempi * a2r - tempr * a2i;
 
- 		}
 
- 	    }
 
- 	    t1 = _starpu_dlapy3_(&cq, &sqr, &sqi);
 
- 	    cq /= t1;
 
- 	    sqr /= t1;
 
- 	    sqi /= t1;
 
- /*           Compute diagonal elements of QBZ */
 
- 	    tempr = sqr * szr - sqi * szi;
 
- 	    tempi = sqr * szi + sqi * szr;
 
- 	    b1r = cq * cz * b11 + tempr * b22;
 
- 	    b1i = tempi * b22;
 
- 	    b1a = _starpu_dlapy2_(&b1r, &b1i);
 
- 	    b2r = cq * cz * b22 + tempr * b11;
 
- 	    b2i = -tempi * b11;
 
- 	    b2a = _starpu_dlapy2_(&b2r, &b2i);
 
- /*           Normalize so beta > 0, and Im( alpha1 ) > 0 */
 
- 	    beta[ilast - 1] = b1a;
 
- 	    beta[ilast] = b2a;
 
- 	    alphar[ilast - 1] = wr * b1a * s1inv;
 
- 	    alphai[ilast - 1] = wi * b1a * s1inv;
 
- 	    alphar[ilast] = wr * b2a * s1inv;
 
- 	    alphai[ilast] = -(wi * b2a) * s1inv;
 
- /*           Step 3: Go to next block -- exit if finished. */
 
- 	    ilast = ifirst - 1;
 
- 	    if (ilast < *ilo) {
 
- 		goto L380;
 
- 	    }
 
- /*           Reset counters */
 
- 	    iiter = 0;
 
- 	    eshift = 0.;
 
- 	    if (! ilschr) {
 
- 		ilastm = ilast;
 
- 		if (ifrstm > ilast) {
 
- 		    ifrstm = *ilo;
 
- 		}
 
- 	    }
 
- 	    goto L350;
 
- 	} else {
 
- /*           Usual case: 3x3 or larger block, using Francis implicit */
 
- /*                       double-shift */
 
- /*                                    2 */
 
- /*           Eigenvalue equation is  w  - c w + d = 0, */
 
- /*                                         -1 2        -1 */
 
- /*           so compute 1st column of  (A B  )  - c A B   + d */
 
- /*           using the formula in QZIT (from EISPACK) */
 
- /*           We assume that the block is at least 3x3 */
 
- 	    ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale * 
 
- 		    t[ilast - 1 + (ilast - 1) * t_dim1]);
 
- 	    ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
 
- 		    ilast - 1 + (ilast - 1) * t_dim1]);
 
- 	    ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
 
- 		    ilast + ilast * t_dim1]);
 
- 	    ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast + 
 
- 		    ilast * t_dim1]);
 
- 	    u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
 
- 	    ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
 
- 		    ifirst + ifirst * t_dim1]);
 
- 	    ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
 
- 		    ifirst + ifirst * t_dim1]);
 
- 	    ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale * 
 
- 		    t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 
- 	    ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
 
- 		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 
- 	    ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
 
- 		    bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
 
- 	    u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst 
 
- 		    + 1) * t_dim1];
 
- 	    v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12 
 
- 		    * ad11l + (ad12l - ad11l * u12l) * ad21l;
 
- 	    v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 - 
 
- 		    ad11l) + ad21 * u12) * ad21l;
 
- 	    v[2] = ad32l * ad21l;
 
- 	    istart = ifirst;
 
- 	    _starpu_dlarfg_(&c__3, v, &v[1], &c__1, &tau);
 
- 	    v[0] = 1.;
 
- /*           Sweep */
 
- 	    i__2 = ilast - 2;
 
- 	    for (j = istart; j <= i__2; ++j) {
 
- /*              All but last elements: use 3x3 Householder transforms. */
 
- /*              Zero (j-1)st column of A */
 
- 		if (j > istart) {
 
- 		    v[0] = h__[j + (j - 1) * h_dim1];
 
- 		    v[1] = h__[j + 1 + (j - 1) * h_dim1];
 
- 		    v[2] = h__[j + 2 + (j - 1) * h_dim1];
 
- 		    _starpu_dlarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
 
- 			    tau);
 
- 		    v[0] = 1.;
 
- 		    h__[j + 1 + (j - 1) * h_dim1] = 0.;
 
- 		    h__[j + 2 + (j - 1) * h_dim1] = 0.;
 
- 		}
 
- 		i__3 = ilastm;
 
- 		for (jc = j; jc <= i__3; ++jc) {
 
- 		    temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 + 
 
- 			    jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
 
- 		    h__[j + jc * h_dim1] -= temp;
 
- 		    h__[j + 1 + jc * h_dim1] -= temp * v[1];
 
- 		    h__[j + 2 + jc * h_dim1] -= temp * v[2];
 
- 		    temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc * 
 
- 			    t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
 
- 		    t[j + jc * t_dim1] -= temp2;
 
- 		    t[j + 1 + jc * t_dim1] -= temp2 * v[1];
 
- 		    t[j + 2 + jc * t_dim1] -= temp2 * v[2];
 
- /* L230: */
 
- 		}
 
- 		if (ilq) {
 
- 		    i__3 = *n;
 
- 		    for (jr = 1; jr <= i__3; ++jr) {
 
- 			temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j + 
 
- 				1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
 
- 				);
 
- 			q[jr + j * q_dim1] -= temp;
 
- 			q[jr + (j + 1) * q_dim1] -= temp * v[1];
 
- 			q[jr + (j + 2) * q_dim1] -= temp * v[2];
 
- /* L240: */
 
- 		    }
 
- 		}
 
- /*              Zero j-th column of B (see DLAGBC for details) */
 
- /*              Swap rows to pivot */
 
- 		ilpivt = FALSE_;
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = t[j + 1 + (j + 1) * t_dim1], abs(d__1)), d__4 =
 
- 			 (d__2 = t[j + 1 + (j + 2) * t_dim1], abs(d__2));
 
- 		temp = max(d__3,d__4);
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = t[j + 2 + (j + 1) * t_dim1], abs(d__1)), d__4 =
 
- 			 (d__2 = t[j + 2 + (j + 2) * t_dim1], abs(d__2));
 
- 		temp2 = max(d__3,d__4);
 
- 		if (max(temp,temp2) < safmin) {
 
- 		    scale = 0.;
 
- 		    u1 = 1.;
 
- 		    u2 = 0.;
 
- 		    goto L250;
 
- 		} else if (temp >= temp2) {
 
- 		    w11 = t[j + 1 + (j + 1) * t_dim1];
 
- 		    w21 = t[j + 2 + (j + 1) * t_dim1];
 
- 		    w12 = t[j + 1 + (j + 2) * t_dim1];
 
- 		    w22 = t[j + 2 + (j + 2) * t_dim1];
 
- 		    u1 = t[j + 1 + j * t_dim1];
 
- 		    u2 = t[j + 2 + j * t_dim1];
 
- 		} else {
 
- 		    w21 = t[j + 1 + (j + 1) * t_dim1];
 
- 		    w11 = t[j + 2 + (j + 1) * t_dim1];
 
- 		    w22 = t[j + 1 + (j + 2) * t_dim1];
 
- 		    w12 = t[j + 2 + (j + 2) * t_dim1];
 
- 		    u2 = t[j + 1 + j * t_dim1];
 
- 		    u1 = t[j + 2 + j * t_dim1];
 
- 		}
 
- /*              Swap columns if nec. */
 
- 		if (abs(w12) > abs(w11)) {
 
- 		    ilpivt = TRUE_;
 
- 		    temp = w12;
 
- 		    temp2 = w22;
 
- 		    w12 = w11;
 
- 		    w22 = w21;
 
- 		    w11 = temp;
 
- 		    w21 = temp2;
 
- 		}
 
- /*              LU-factor */
 
- 		temp = w21 / w11;
 
- 		u2 -= temp * u1;
 
- 		w22 -= temp * w12;
 
- 		w21 = 0.;
 
- /*              Compute SCALE */
 
- 		scale = 1.;
 
- 		if (abs(w22) < safmin) {
 
- 		    scale = 0.;
 
- 		    u2 = 1.;
 
- 		    u1 = -w12 / w11;
 
- 		    goto L250;
 
- 		}
 
- 		if (abs(w22) < abs(u2)) {
 
- 		    scale = (d__1 = w22 / u2, abs(d__1));
 
- 		}
 
- 		if (abs(w11) < abs(u1)) {
 
- /* Computing MIN */
 
- 		    d__2 = scale, d__3 = (d__1 = w11 / u1, abs(d__1));
 
- 		    scale = min(d__2,d__3);
 
- 		}
 
- /*              Solve */
 
- 		u2 = scale * u2 / w22;
 
- 		u1 = (scale * u1 - w12 * u2) / w11;
 
- L250:
 
- 		if (ilpivt) {
 
- 		    temp = u2;
 
- 		    u2 = u1;
 
- 		    u1 = temp;
 
- 		}
 
- /*              Compute Householder Vector */
 
- /* Computing 2nd power */
 
- 		d__1 = scale;
 
- /* Computing 2nd power */
 
- 		d__2 = u1;
 
- /* Computing 2nd power */
 
- 		d__3 = u2;
 
- 		t1 = sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
 
- 		tau = scale / t1 + 1.;
 
- 		vs = -1. / (scale + t1);
 
- 		v[0] = 1.;
 
- 		v[1] = vs * u1;
 
- 		v[2] = vs * u2;
 
- /*              Apply transformations from the right. */
 
- /* Computing MIN */
 
- 		i__4 = j + 3;
 
- 		i__3 = min(i__4,ilast);
 
- 		for (jr = ifrstm; jr <= i__3; ++jr) {
 
- 		    temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j + 
 
- 			    1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
 
- 		    h__[jr + j * h_dim1] -= temp;
 
- 		    h__[jr + (j + 1) * h_dim1] -= temp * v[1];
 
- 		    h__[jr + (j + 2) * h_dim1] -= temp * v[2];
 
- /* L260: */
 
- 		}
 
- 		i__3 = j + 2;
 
- 		for (jr = ifrstm; jr <= i__3; ++jr) {
 
- 		    temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
 
- 			     t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
 
- 		    t[jr + j * t_dim1] -= temp;
 
- 		    t[jr + (j + 1) * t_dim1] -= temp * v[1];
 
- 		    t[jr + (j + 2) * t_dim1] -= temp * v[2];
 
- /* L270: */
 
- 		}
 
- 		if (ilz) {
 
- 		    i__3 = *n;
 
- 		    for (jr = 1; jr <= i__3; ++jr) {
 
- 			temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
 
- 				j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) * 
 
- 				z_dim1]);
 
- 			z__[jr + j * z_dim1] -= temp;
 
- 			z__[jr + (j + 1) * z_dim1] -= temp * v[1];
 
- 			z__[jr + (j + 2) * z_dim1] -= temp * v[2];
 
- /* L280: */
 
- 		    }
 
- 		}
 
- 		t[j + 1 + j * t_dim1] = 0.;
 
- 		t[j + 2 + j * t_dim1] = 0.;
 
- /* L290: */
 
- 	    }
 
- /*           Last elements: Use Givens rotations */
 
- /*           Rotations from the left */
 
- 	    j = ilast - 1;
 
- 	    temp = h__[j + (j - 1) * h_dim1];
 
- 	    _starpu_dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j + 
 
- 		    (j - 1) * h_dim1]);
 
- 	    h__[j + 1 + (j - 1) * h_dim1] = 0.;
 
- 	    i__2 = ilastm;
 
- 	    for (jc = j; jc <= i__2; ++jc) {
 
- 		temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc * 
 
- 			h_dim1];
 
- 		h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ * 
 
- 			h__[j + 1 + jc * h_dim1];
 
- 		h__[j + jc * h_dim1] = temp;
 
- 		temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
 
- 		t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j 
 
- 			+ 1 + jc * t_dim1];
 
- 		t[j + jc * t_dim1] = temp2;
 
- /* L300: */
 
- 	    }
 
- 	    if (ilq) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) * 
 
- 			    q_dim1];
 
- 		    q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
 
- 			     q[jr + (j + 1) * q_dim1];
 
- 		    q[jr + j * q_dim1] = temp;
 
- /* L310: */
 
- 		}
 
- 	    }
 
- /*           Rotations from the right. */
 
- 	    temp = t[j + 1 + (j + 1) * t_dim1];
 
- 	    _starpu_dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j + 
 
- 		    1) * t_dim1]);
 
- 	    t[j + 1 + j * t_dim1] = 0.;
 
- 	    i__2 = ilast;
 
- 	    for (jr = ifrstm; jr <= i__2; ++jr) {
 
- 		temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j * 
 
- 			h_dim1];
 
- 		h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
 
- 			 h__[jr + j * h_dim1];
 
- 		h__[jr + (j + 1) * h_dim1] = temp;
 
- /* L320: */
 
- 	    }
 
- 	    i__2 = ilast - 1;
 
- 	    for (jr = ifrstm; jr <= i__2; ++jr) {
 
- 		temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
 
- 			;
 
- 		t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
 
- 			jr + j * t_dim1];
 
- 		t[jr + (j + 1) * t_dim1] = temp;
 
- /* L330: */
 
- 	    }
 
- 	    if (ilz) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
 
- 			     z_dim1];
 
- 		    z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] + 
 
- 			    c__ * z__[jr + j * z_dim1];
 
- 		    z__[jr + (j + 1) * z_dim1] = temp;
 
- /* L340: */
 
- 		}
 
- 	    }
 
- /*           End of Double-Shift code */
 
- 	}
 
- 	goto L350;
 
- /*        End of iteration loop */
 
- L350:
 
- /* L360: */
 
- 	;
 
-     }
 
- /*     Drop-through = non-convergence */
 
-     *info = ilast;
 
-     goto L420;
 
- /*     Successful completion of all QZ steps */
 
- L380:
 
- /*     Set Eigenvalues 1:ILO-1 */
 
-     i__1 = *ilo - 1;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	if (t[j + j * t_dim1] < 0.) {
 
- 	    if (ilschr) {
 
- 		i__2 = j;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
 
- 		    t[jr + j * t_dim1] = -t[jr + j * t_dim1];
 
- /* L390: */
 
- 		}
 
- 	    } else {
 
- 		h__[j + j * h_dim1] = -h__[j + j * h_dim1];
 
- 		t[j + j * t_dim1] = -t[j + j * t_dim1];
 
- 	    }
 
- 	    if (ilz) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
 
- /* L400: */
 
- 		}
 
- 	    }
 
- 	}
 
- 	alphar[j] = h__[j + j * h_dim1];
 
- 	alphai[j] = 0.;
 
- 	beta[j] = t[j + j * t_dim1];
 
- /* L410: */
 
-     }
 
- /*     Normal Termination */
 
-     *info = 0;
 
- /*     Exit (other than argument error) -- return optimal workspace size */
 
- L420:
 
-     work[1] = (doublereal) (*n);
 
-     return 0;
 
- /*     End of DHGEQZ */
 
- } /* _starpu_dhgeqz_ */
 
 
  |