dw_sparse_cg.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * StarPU
  3. * Copyright (C) INRIA 2008-2009 (see AUTHORS file)
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * Conjugate gradients for Sparse matrices
  18. */
  19. #include "dw_sparse_cg.h"
  20. static struct starpu_task *create_task(starpu_tag_t id)
  21. {
  22. starpu_codelet *cl = malloc(sizeof(starpu_codelet));
  23. cl->model = NULL;
  24. struct starpu_task *task = starpu_task_create();
  25. task->cl = cl;
  26. task->cl_arg = NULL;
  27. task->use_tag = 1;
  28. task->tag_id = id;
  29. return task;
  30. }
  31. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  32. {
  33. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  34. /* example of 3-band matrix */
  35. float *nzval;
  36. uint32_t nnz;
  37. uint32_t *colind;
  38. uint32_t *rowptr;
  39. nnz = 3*size-2;
  40. nzval = malloc(nnz*sizeof(float));
  41. colind = malloc(nnz*sizeof(uint32_t));
  42. rowptr = malloc(size*sizeof(uint32_t));
  43. assert(nzval);
  44. assert(colind);
  45. assert(rowptr);
  46. /* fill the matrix */
  47. unsigned row;
  48. unsigned pos = 0;
  49. for (row = 0; row < size; row++)
  50. {
  51. rowptr[row] = pos;
  52. if (row > 0) {
  53. nzval[pos] = 1.0f;
  54. colind[pos] = row-1;
  55. pos++;
  56. }
  57. nzval[pos] = 5.0f;
  58. colind[pos] = row;
  59. pos++;
  60. if (row < size - 1) {
  61. nzval[pos] = 1.0f;
  62. colind[pos] = row+1;
  63. pos++;
  64. }
  65. }
  66. *_nnz = nnz;
  67. *_nrow = size;
  68. *_nzvalA = nzval;
  69. *_colind = colind;
  70. *_rowptr = rowptr;
  71. STARPU_ASSERT(pos == nnz);
  72. /* initiate the 2 vectors */
  73. float *invec, *outvec;
  74. invec = malloc(size*sizeof(float));
  75. assert(invec);
  76. outvec = malloc(size*sizeof(float));
  77. assert(outvec);
  78. /* fill those */
  79. unsigned ind;
  80. for (ind = 0; ind < size; ind++)
  81. {
  82. invec[ind] = 2.0f;
  83. outvec[ind] = 0.0f;
  84. }
  85. *_vecb = invec;
  86. *_vecx = outvec;
  87. }
  88. void init_problem(void)
  89. {
  90. /* create the sparse input matrix */
  91. float *nzval;
  92. float *vecb;
  93. float *vecx;
  94. uint32_t nnz;
  95. uint32_t nrow;
  96. uint32_t *colind;
  97. uint32_t *rowptr;
  98. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  99. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  100. }
  101. /*
  102. * cg initialization phase
  103. */
  104. void init_cg(struct cg_problem *problem)
  105. {
  106. problem->i = 0;
  107. /* r = b - A x */
  108. struct starpu_task *task1 = create_task(1UL);
  109. task1->cl->where = STARPU_CPU;
  110. task1->cl->cpu_func = cpu_codelet_func_1;
  111. task1->cl->nbuffers = 4;
  112. task1->buffers[0].handle = problem->ds_matrixA;
  113. task1->buffers[0].mode = STARPU_R;
  114. task1->buffers[1].handle = problem->ds_vecx;
  115. task1->buffers[1].mode = STARPU_R;
  116. task1->buffers[2].handle = problem->ds_vecr;
  117. task1->buffers[2].mode = STARPU_W;
  118. task1->buffers[3].handle = problem->ds_vecb;
  119. task1->buffers[3].mode = STARPU_R;
  120. /* d = r */
  121. struct starpu_task *task2 = create_task(2UL);
  122. task2->cl->where = STARPU_CPU;
  123. task2->cl->cpu_func = cpu_codelet_func_2;
  124. task2->cl->nbuffers = 2;
  125. task2->buffers[0].handle = problem->ds_vecd;
  126. task2->buffers[0].mode = STARPU_W;
  127. task2->buffers[1].handle = problem->ds_vecr;
  128. task2->buffers[1].mode = STARPU_R;
  129. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  130. /* delta_new = trans(r) r */
  131. struct starpu_task *task3 = create_task(3UL);
  132. task3->cl->where = STARPU_CUDA|STARPU_CPU;
  133. #ifdef STARPU_USE_CUDA
  134. task3->cl->cuda_func = cublas_codelet_func_3;
  135. #endif
  136. task3->cl->cpu_func = cpu_codelet_func_3;
  137. task3->cl_arg = problem;
  138. task3->cl->nbuffers = 1;
  139. task3->buffers[0].handle = problem->ds_vecr;
  140. task3->buffers[0].mode = STARPU_R;
  141. task3->callback_func = iteration_cg;
  142. task3->callback_arg = problem;
  143. /* XXX 3 should only depend on 1 ... */
  144. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  145. /* launch the computation now */
  146. starpu_submit_task(task1);
  147. starpu_submit_task(task2);
  148. starpu_submit_task(task3);
  149. }
  150. /*
  151. * the inner iteration of the cg algorithm
  152. * the codelet code launcher is its own callback !
  153. */
  154. void launch_new_cg_iteration(struct cg_problem *problem)
  155. {
  156. unsigned iter = problem->i;
  157. unsigned long long maskiter = (iter*1024);
  158. /* q = A d */
  159. struct starpu_task *task4 = create_task(maskiter | 4UL);
  160. task4->cl->where = STARPU_CPU;
  161. task4->cl->cpu_func = cpu_codelet_func_4;
  162. task4->cl->nbuffers = 3;
  163. task4->buffers[0].handle = problem->ds_matrixA;
  164. task4->buffers[0].mode = STARPU_R;
  165. task4->buffers[1].handle = problem->ds_vecd;
  166. task4->buffers[1].mode = STARPU_R;
  167. task4->buffers[2].handle = problem->ds_vecq;
  168. task4->buffers[2].mode = STARPU_W;
  169. /* alpha = delta_new / ( trans(d) q )*/
  170. struct starpu_task *task5 = create_task(maskiter | 5UL);
  171. task5->cl->where = STARPU_CUDA|STARPU_CPU;
  172. #ifdef STARPU_USE_CUDA
  173. task5->cl->cuda_func = cublas_codelet_func_5;
  174. #endif
  175. task5->cl->cpu_func = cpu_codelet_func_5;
  176. task5->cl_arg = problem;
  177. task5->cl->nbuffers = 2;
  178. task5->buffers[0].handle = problem->ds_vecd;
  179. task5->buffers[0].mode = STARPU_R;
  180. task5->buffers[1].handle = problem->ds_vecq;
  181. task5->buffers[1].mode = STARPU_R;
  182. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  183. /* x = x + alpha d */
  184. struct starpu_task *task6 = create_task(maskiter | 6UL);
  185. task6->cl->where = STARPU_CUDA|STARPU_CPU;
  186. #ifdef STARPU_USE_CUDA
  187. task6->cl->cuda_func = cublas_codelet_func_6;
  188. #endif
  189. task6->cl->cpu_func = cpu_codelet_func_6;
  190. task6->cl_arg = problem;
  191. task6->cl->nbuffers = 2;
  192. task6->buffers[0].handle = problem->ds_vecx;
  193. task6->buffers[0].mode = STARPU_RW;
  194. task6->buffers[1].handle = problem->ds_vecd;
  195. task6->buffers[1].mode = STARPU_R;
  196. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  197. /* r = r - alpha q */
  198. struct starpu_task *task7 = create_task(maskiter | 7UL);
  199. task7->cl->where = STARPU_CUDA|STARPU_CPU;
  200. #ifdef STARPU_USE_CUDA
  201. task7->cl->cuda_func = cublas_codelet_func_7;
  202. #endif
  203. task7->cl->cpu_func = cpu_codelet_func_7;
  204. task7->cl_arg = problem;
  205. task7->cl->nbuffers = 2;
  206. task7->buffers[0].handle = problem->ds_vecr;
  207. task7->buffers[0].mode = STARPU_RW;
  208. task7->buffers[1].handle = problem->ds_vecq;
  209. task7->buffers[1].mode = STARPU_R;
  210. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  211. /* update delta_* and compute beta */
  212. struct starpu_task *task8 = create_task(maskiter | 8UL);
  213. task8->cl->where = STARPU_CUDA|STARPU_CPU;
  214. #ifdef STARPU_USE_CUDA
  215. task8->cl->cuda_func = cublas_codelet_func_8;
  216. #endif
  217. task8->cl->cpu_func = cpu_codelet_func_8;
  218. task8->cl_arg = problem;
  219. task8->cl->nbuffers = 1;
  220. task8->buffers[0].handle = problem->ds_vecr;
  221. task8->buffers[0].mode = STARPU_R;
  222. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  223. /* d = r + beta d */
  224. struct starpu_task *task9 = create_task(maskiter | 9UL);
  225. task9->cl->where = STARPU_CUDA|STARPU_CPU;
  226. #ifdef STARPU_USE_CUDA
  227. task9->cl->cuda_func = cublas_codelet_func_9;
  228. #endif
  229. task9->cl->cpu_func = cpu_codelet_func_9;
  230. task9->cl_arg = problem;
  231. task9->cl->nbuffers = 2;
  232. task9->buffers[0].handle = problem->ds_vecd;
  233. task9->buffers[0].mode = STARPU_RW;
  234. task9->buffers[1].handle = problem->ds_vecr;
  235. task9->buffers[1].mode = STARPU_R;
  236. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  237. task9->callback_func = iteration_cg;
  238. task9->callback_arg = problem;
  239. /* launch the computation now */
  240. starpu_submit_task(task4);
  241. starpu_submit_task(task5);
  242. starpu_submit_task(task6);
  243. starpu_submit_task(task7);
  244. starpu_submit_task(task8);
  245. starpu_submit_task(task9);
  246. }
  247. void iteration_cg(void *problem)
  248. {
  249. struct cg_problem *pb = problem;
  250. printf("i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  251. if ((pb->i < MAXITER) &&
  252. (pb->delta_new > pb->epsilon) )
  253. {
  254. if (pb->i % 1000 == 0)
  255. printf("i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  256. pb->i++;
  257. /* we did not reach the stop condition yet */
  258. launch_new_cg_iteration(problem);
  259. }
  260. else {
  261. /* we may stop */
  262. printf("We are done ... after %d iterations \n", pb->i - 1);
  263. printf("i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  264. sem_post(pb->sem);
  265. }
  266. }
  267. /*
  268. * initializing the problem
  269. */
  270. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  271. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  272. {
  273. /* first declare all the data structures to the runtime */
  274. starpu_data_handle ds_matrixA;
  275. starpu_data_handle ds_vecx, ds_vecb;
  276. starpu_data_handle ds_vecr, ds_vecd, ds_vecq;
  277. /* first the user-allocated data */
  278. starpu_register_csr_data(&ds_matrixA, 0, nnz, nrow,
  279. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  280. starpu_register_vector_data(&ds_vecx, 0, (uintptr_t)vecx, nrow, sizeof(float));
  281. starpu_register_vector_data(&ds_vecb, 0, (uintptr_t)vecb, nrow, sizeof(float));
  282. /* then allocate the algorithm intern data */
  283. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  284. unsigned i;
  285. ptr_vecr = malloc(nrow*sizeof(float));
  286. ptr_vecd = malloc(nrow*sizeof(float));
  287. ptr_vecq = malloc(nrow*sizeof(float));
  288. for (i = 0; i < nrow; i++)
  289. {
  290. ptr_vecr[i] = 0.0f;
  291. ptr_vecd[i] = 0.0f;
  292. ptr_vecq[i] = 0.0f;
  293. }
  294. printf("nrow = %d \n", nrow);
  295. /* and declare them as well */
  296. starpu_register_vector_data(&ds_vecr, 0, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  297. starpu_register_vector_data(&ds_vecd, 0, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  298. starpu_register_vector_data(&ds_vecq, 0, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  299. /* we now have the complete problem */
  300. struct cg_problem problem;
  301. problem.ds_matrixA = ds_matrixA;
  302. problem.ds_vecx = ds_vecx;
  303. problem.ds_vecb = ds_vecb;
  304. problem.ds_vecr = ds_vecr;
  305. problem.ds_vecd = ds_vecd;
  306. problem.ds_vecq = ds_vecq;
  307. problem.epsilon = EPSILON;
  308. problem.size = nrow;
  309. problem.delta_old = 1.0;
  310. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  311. /* we need a semaphore to synchronize with callbacks */
  312. sem_t sem;
  313. sem_init(&sem, 0, 0U);
  314. problem.sem = &sem;
  315. init_cg(&problem);
  316. sem_wait(&sem);
  317. sem_destroy(&sem);
  318. print_results(vecx, nrow);
  319. }
  320. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  321. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  322. {
  323. /* start the runtime */
  324. starpu_init(NULL);
  325. starpu_helper_init_cublas();
  326. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  327. }