| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 | 
							- /* dgbmv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dgbmv_(char *trans, integer *m, integer *n, integer *kl, 
 
- 	integer *ku, doublereal *alpha, doublereal *a, integer *lda, 
 
- 	doublereal *x, integer *incx, doublereal *beta, doublereal *y, 
 
- 	integer *incy)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 
-     /* Local variables */
 
-     integer i__, j, k, ix, iy, jx, jy, kx, ky, kup1, info;
 
-     doublereal temp;
 
-     integer lenx, leny;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBMV  performs one of the matrix-vector operations */
 
- /*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y, */
 
- /*  where alpha and beta are scalars, x and y are vectors and A is an */
 
- /*  m by n band matrix, with kl sub-diagonals and ku super-diagonals. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  TRANS  - CHARACTER*1. */
 
- /*           On entry, TRANS specifies the operation to be performed as */
 
- /*           follows: */
 
- /*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y. */
 
- /*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y. */
 
- /*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y. */
 
- /*           Unchanged on exit. */
 
- /*  M      - INTEGER. */
 
- /*           On entry, M specifies the number of rows of the matrix A. */
 
- /*           M must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry, N specifies the number of columns of the matrix A. */
 
- /*           N must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  KL     - INTEGER. */
 
- /*           On entry, KL specifies the number of sub-diagonals of the */
 
- /*           matrix A. KL must satisfy  0 .le. KL. */
 
- /*           Unchanged on exit. */
 
- /*  KU     - INTEGER. */
 
- /*           On entry, KU specifies the number of super-diagonals of the */
 
- /*           matrix A. KU must satisfy  0 .le. KU. */
 
- /*           Unchanged on exit. */
 
- /*  ALPHA  - DOUBLE PRECISION. */
 
- /*           On entry, ALPHA specifies the scalar alpha. */
 
- /*           Unchanged on exit. */
 
- /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
 
- /*           Before entry, the leading ( kl + ku + 1 ) by n part of the */
 
- /*           array A must contain the matrix of coefficients, supplied */
 
- /*           column by column, with the leading diagonal of the matrix in */
 
- /*           row ( ku + 1 ) of the array, the first super-diagonal */
 
- /*           starting at position 2 in row ku, the first sub-diagonal */
 
- /*           starting at position 1 in row ( ku + 2 ), and so on. */
 
- /*           Elements in the array A that do not correspond to elements */
 
- /*           in the band matrix (such as the top left ku by ku triangle) */
 
- /*           are not referenced. */
 
- /*           The following program segment will transfer a band matrix */
 
- /*           from conventional full matrix storage to band storage: */
 
- /*                 DO 20, J = 1, N */
 
- /*                    K = KU + 1 - J */
 
- /*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) */
 
- /*                       A( K + I, J ) = matrix( I, J ) */
 
- /*              10    CONTINUE */
 
- /*              20 CONTINUE */
 
- /*           Unchanged on exit. */
 
- /*  LDA    - INTEGER. */
 
- /*           On entry, LDA specifies the first dimension of A as declared */
 
- /*           in the calling (sub) program. LDA must be at least */
 
- /*           ( kl + ku + 1 ). */
 
- /*           Unchanged on exit. */
 
- /*  X      - DOUBLE PRECISION array of DIMENSION at least */
 
- /*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
 
- /*           and at least */
 
- /*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
 
- /*           Before entry, the incremented array X must contain the */
 
- /*           vector x. */
 
- /*           Unchanged on exit. */
 
- /*  INCX   - INTEGER. */
 
- /*           On entry, INCX specifies the increment for the elements of */
 
- /*           X. INCX must not be zero. */
 
- /*           Unchanged on exit. */
 
- /*  BETA   - DOUBLE PRECISION. */
 
- /*           On entry, BETA specifies the scalar beta. When BETA is */
 
- /*           supplied as zero then Y need not be set on input. */
 
- /*           Unchanged on exit. */
 
- /*  Y      - DOUBLE PRECISION array of DIMENSION at least */
 
- /*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
 
- /*           and at least */
 
- /*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
 
- /*           Before entry, the incremented array Y must contain the */
 
- /*           vector y. On exit, Y is overwritten by the updated vector y. */
 
- /*  INCY   - INTEGER. */
 
- /*           On entry, INCY specifies the increment for the elements of */
 
- /*           Y. INCY must not be zero. */
 
- /*           Unchanged on exit. */
 
- /*  Level 2 Blas routine. */
 
- /*  -- Written on 22-October-1986. */
 
- /*     Jack Dongarra, Argonne National Lab. */
 
- /*     Jeremy Du Croz, Nag Central Office. */
 
- /*     Sven Hammarling, Nag Central Office. */
 
- /*     Richard Hanson, Sandia National Labs. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --x;
 
-     --y;
 
-     /* Function Body */
 
-     info = 0;
 
-     if (! _starpu_lsame_(trans, "N") && ! _starpu_lsame_(trans, "T") && ! _starpu_lsame_(trans, "C")
 
- 	    ) {
 
- 	info = 1;
 
-     } else if (*m < 0) {
 
- 	info = 2;
 
-     } else if (*n < 0) {
 
- 	info = 3;
 
-     } else if (*kl < 0) {
 
- 	info = 4;
 
-     } else if (*ku < 0) {
 
- 	info = 5;
 
-     } else if (*lda < *kl + *ku + 1) {
 
- 	info = 8;
 
-     } else if (*incx == 0) {
 
- 	info = 10;
 
-     } else if (*incy == 0) {
 
- 	info = 13;
 
-     }
 
-     if (info != 0) {
 
- 	_starpu_xerbla_("DGBMV ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
 
- 	return 0;
 
-     }
 
- /*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set */
 
- /*     up the start points in  X  and  Y. */
 
-     if (_starpu_lsame_(trans, "N")) {
 
- 	lenx = *n;
 
- 	leny = *m;
 
-     } else {
 
- 	lenx = *m;
 
- 	leny = *n;
 
-     }
 
-     if (*incx > 0) {
 
- 	kx = 1;
 
-     } else {
 
- 	kx = 1 - (lenx - 1) * *incx;
 
-     }
 
-     if (*incy > 0) {
 
- 	ky = 1;
 
-     } else {
 
- 	ky = 1 - (leny - 1) * *incy;
 
-     }
 
- /*     Start the operations. In this version the elements of A are */
 
- /*     accessed sequentially with one pass through the band part of A. */
 
- /*     First form  y := beta*y. */
 
-     if (*beta != 1.) {
 
- 	if (*incy == 1) {
 
- 	    if (*beta == 0.) {
 
- 		i__1 = leny;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    y[i__] = 0.;
 
- /* L10: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = leny;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    y[i__] = *beta * y[i__];
 
- /* L20: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- 	    iy = ky;
 
- 	    if (*beta == 0.) {
 
- 		i__1 = leny;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    y[iy] = 0.;
 
- 		    iy += *incy;
 
- /* L30: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = leny;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    y[iy] = *beta * y[iy];
 
- 		    iy += *incy;
 
- /* L40: */
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     if (*alpha == 0.) {
 
- 	return 0;
 
-     }
 
-     kup1 = *ku + 1;
 
-     if (_starpu_lsame_(trans, "N")) {
 
- /*        Form  y := alpha*A*x + y. */
 
- 	jx = kx;
 
- 	if (*incy == 1) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[jx] != 0.) {
 
- 		    temp = *alpha * x[jx];
 
- 		    k = kup1 - j;
 
- /* Computing MAX */
 
- 		    i__2 = 1, i__3 = j - *ku;
 
- /* Computing MIN */
 
- 		    i__5 = *m, i__6 = j + *kl;
 
- 		    i__4 = min(i__5,i__6);
 
- 		    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
 
- 			y[i__] += temp * a[k + i__ + j * a_dim1];
 
- /* L50: */
 
- 		    }
 
- 		}
 
- 		jx += *incx;
 
- /* L60: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[jx] != 0.) {
 
- 		    temp = *alpha * x[jx];
 
- 		    iy = ky;
 
- 		    k = kup1 - j;
 
- /* Computing MAX */
 
- 		    i__4 = 1, i__2 = j - *ku;
 
- /* Computing MIN */
 
- 		    i__5 = *m, i__6 = j + *kl;
 
- 		    i__3 = min(i__5,i__6);
 
- 		    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
 
- 			y[iy] += temp * a[k + i__ + j * a_dim1];
 
- 			iy += *incy;
 
- /* L70: */
 
- 		    }
 
- 		}
 
- 		jx += *incx;
 
- 		if (j > *ku) {
 
- 		    ky += *incy;
 
- 		}
 
- /* L80: */
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        Form  y := alpha*A'*x + y. */
 
- 	jy = ky;
 
- 	if (*incx == 1) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		temp = 0.;
 
- 		k = kup1 - j;
 
- /* Computing MAX */
 
- 		i__3 = 1, i__4 = j - *ku;
 
- /* Computing MIN */
 
- 		i__5 = *m, i__6 = j + *kl;
 
- 		i__2 = min(i__5,i__6);
 
- 		for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
 
- 		    temp += a[k + i__ + j * a_dim1] * x[i__];
 
- /* L90: */
 
- 		}
 
- 		y[jy] += *alpha * temp;
 
- 		jy += *incy;
 
- /* L100: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		temp = 0.;
 
- 		ix = kx;
 
- 		k = kup1 - j;
 
- /* Computing MAX */
 
- 		i__2 = 1, i__3 = j - *ku;
 
- /* Computing MIN */
 
- 		i__5 = *m, i__6 = j + *kl;
 
- 		i__4 = min(i__5,i__6);
 
- 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
 
- 		    temp += a[k + i__ + j * a_dim1] * x[ix];
 
- 		    ix += *incx;
 
- /* L110: */
 
- 		}
 
- 		y[jy] += *alpha * temp;
 
- 		jy += *incy;
 
- 		if (j > *ku) {
 
- 		    kx += *incx;
 
- 		}
 
- /* L120: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGBMV . */
 
- } /* _starpu_dgbmv_ */
 
 
  |