| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 | /* dtrsm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dtrsm_(char *side, char *uplo, char *transa, char *diag, 	integer *m, integer *n, doublereal *alpha, doublereal *a, integer *	lda, doublereal *b, integer *ldb){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, k, info;    doublereal temp;    logical lside;    extern logical _starpu_lsame_(char *, char *);    integer nrowa;    logical upper;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    logical nounit;/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTRSM  solves one of the matrix equations *//*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B, *//*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or *//*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of *//*     op( A ) = A   or   op( A ) = A'. *//*  The matrix X is overwritten on B. *//*  Arguments *//*  ========== *//*  SIDE   - CHARACTER*1. *//*           On entry, SIDE specifies whether op( A ) appears on the left *//*           or right of X as follows: *//*              SIDE = 'L' or 'l'   op( A )*X = alpha*B. *//*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. *//*           Unchanged on exit. *//*  UPLO   - CHARACTER*1. *//*           On entry, UPLO specifies whether the matrix A is an upper or *//*           lower triangular matrix as follows: *//*              UPLO = 'U' or 'u'   A is an upper triangular matrix. *//*              UPLO = 'L' or 'l'   A is a lower triangular matrix. *//*           Unchanged on exit. *//*  TRANSA - CHARACTER*1. *//*           On entry, TRANSA specifies the form of op( A ) to be used in *//*           the matrix multiplication as follows: *//*              TRANSA = 'N' or 'n'   op( A ) = A. *//*              TRANSA = 'T' or 't'   op( A ) = A'. *//*              TRANSA = 'C' or 'c'   op( A ) = A'. *//*           Unchanged on exit. *//*  DIAG   - CHARACTER*1. *//*           On entry, DIAG specifies whether or not A is unit triangular *//*           as follows: *//*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. *//*              DIAG = 'N' or 'n'   A is not assumed to be unit *//*                                  triangular. *//*           Unchanged on exit. *//*  M      - INTEGER. *//*           On entry, M specifies the number of rows of B. M must be at *//*           least zero. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the number of columns of B.  N must be *//*           at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is *//*           zero then  A is not referenced and  B need not be set before *//*           entry. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m *//*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. *//*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k *//*           upper triangular part of the array  A must contain the upper *//*           triangular matrix  and the strictly lower triangular part of *//*           A is not referenced. *//*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k *//*           lower triangular part of the array  A must contain the lower *//*           triangular matrix  and the strictly upper triangular part of *//*           A is not referenced. *//*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of *//*           A  are not referenced either,  but are assumed to be  unity. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then *//*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' *//*           then LDA must be at least max( 1, n ). *//*           Unchanged on exit. *//*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). *//*           Before entry,  the leading  m by n part of the array  B must *//*           contain  the  right-hand  side  matrix  B,  and  on exit  is *//*           overwritten by the solution matrix  X. *//*  LDB    - INTEGER. *//*           On entry, LDB specifies the first dimension of B as declared *//*           in  the  calling  (sub)  program.   LDB  must  be  at  least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  Level 3 Blas routine. *//*  -- Written on 8-February-1989. *//*     Jack Dongarra, Argonne National Laboratory. *//*     Iain Duff, AERE Harwell. *//*     Jeremy Du Croz, Numerical Algorithms Group Ltd. *//*     Sven Hammarling, Numerical Algorithms Group Ltd. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Parameters .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    lside = _starpu_lsame_(side, "L");    if (lside) {	nrowa = *m;    } else {	nrowa = *n;    }    nounit = _starpu_lsame_(diag, "N");    upper = _starpu_lsame_(uplo, "U");    info = 0;    if (! lside && ! _starpu_lsame_(side, "R")) {	info = 1;    } else if (! upper && ! _starpu_lsame_(uplo, "L")) {	info = 2;    } else if (! _starpu_lsame_(transa, "N") && ! _starpu_lsame_(transa, 	     "T") && ! _starpu_lsame_(transa, "C")) {	info = 3;    } else if (! _starpu_lsame_(diag, "U") && ! _starpu_lsame_(diag, 	    "N")) {	info = 4;    } else if (*m < 0) {	info = 5;    } else if (*n < 0) {	info = 6;    } else if (*lda < max(1,nrowa)) {	info = 9;    } else if (*ldb < max(1,*m)) {	info = 11;    }    if (info != 0) {	_starpu_xerbla_("DTRSM ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0) {	return 0;    }/*     And when  alpha.eq.zero. */    if (*alpha == 0.) {	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = *m;	    for (i__ = 1; i__ <= i__2; ++i__) {		b[i__ + j * b_dim1] = 0.;/* L10: */	    }/* L20: */	}	return 0;    }/*     Start the operations. */    if (lside) {	if (_starpu_lsame_(transa, "N")) {/*           Form  B := alpha*inv( A )*B. */	    if (upper) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (*alpha != 1.) {			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]				    ;/* L30: */			}		    }		    for (k = *m; k >= 1; --k) {			if (b[k + j * b_dim1] != 0.) {			    if (nounit) {				b[k + j * b_dim1] /= a[k + k * a_dim1];			    }			    i__2 = k - 1;			    for (i__ = 1; i__ <= i__2; ++i__) {				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[					i__ + k * a_dim1];/* L40: */			    }			}/* L50: */		    }/* L60: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (*alpha != 1.) {			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]				    ;/* L70: */			}		    }		    i__2 = *m;		    for (k = 1; k <= i__2; ++k) {			if (b[k + j * b_dim1] != 0.) {			    if (nounit) {				b[k + j * b_dim1] /= a[k + k * a_dim1];			    }			    i__3 = *m;			    for (i__ = k + 1; i__ <= i__3; ++i__) {				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[					i__ + k * a_dim1];/* L80: */			    }			}/* L90: */		    }/* L100: */		}	    }	} else {/*           Form  B := alpha*inv( A' )*B. */	    if (upper) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			temp = *alpha * b[i__ + j * b_dim1];			i__3 = i__ - 1;			for (k = 1; k <= i__3; ++k) {			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];/* L110: */			}			if (nounit) {			    temp /= a[i__ + i__ * a_dim1];			}			b[i__ + j * b_dim1] = temp;/* L120: */		    }/* L130: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    for (i__ = *m; i__ >= 1; --i__) {			temp = *alpha * b[i__ + j * b_dim1];			i__2 = *m;			for (k = i__ + 1; k <= i__2; ++k) {			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];/* L140: */			}			if (nounit) {			    temp /= a[i__ + i__ * a_dim1];			}			b[i__ + j * b_dim1] = temp;/* L150: */		    }/* L160: */		}	    }	}    } else {	if (_starpu_lsame_(transa, "N")) {/*           Form  B := alpha*B*inv( A ). */	    if (upper) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (*alpha != 1.) {			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]				    ;/* L170: */			}		    }		    i__2 = j - 1;		    for (k = 1; k <= i__2; ++k) {			if (a[k + j * a_dim1] != 0.) {			    i__3 = *m;			    for (i__ = 1; i__ <= i__3; ++i__) {				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[					i__ + k * b_dim1];/* L180: */			    }			}/* L190: */		    }		    if (nounit) {			temp = 1. / a[j + j * a_dim1];			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];/* L200: */			}		    }/* L210: */		}	    } else {		for (j = *n; j >= 1; --j) {		    if (*alpha != 1.) {			i__1 = *m;			for (i__ = 1; i__ <= i__1; ++i__) {			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]				    ;/* L220: */			}		    }		    i__1 = *n;		    for (k = j + 1; k <= i__1; ++k) {			if (a[k + j * a_dim1] != 0.) {			    i__2 = *m;			    for (i__ = 1; i__ <= i__2; ++i__) {				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[					i__ + k * b_dim1];/* L230: */			    }			}/* L240: */		    }		    if (nounit) {			temp = 1. / a[j + j * a_dim1];			i__1 = *m;			for (i__ = 1; i__ <= i__1; ++i__) {			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];/* L250: */			}		    }/* L260: */		}	    }	} else {/*           Form  B := alpha*B*inv( A' ). */	    if (upper) {		for (k = *n; k >= 1; --k) {		    if (nounit) {			temp = 1. / a[k + k * a_dim1];			i__1 = *m;			for (i__ = 1; i__ <= i__1; ++i__) {			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];/* L270: */			}		    }		    i__1 = k - 1;		    for (j = 1; j <= i__1; ++j) {			if (a[j + k * a_dim1] != 0.) {			    temp = a[j + k * a_dim1];			    i__2 = *m;			    for (i__ = 1; i__ <= i__2; ++i__) {				b[i__ + j * b_dim1] -= temp * b[i__ + k * 					b_dim1];/* L280: */			    }			}/* L290: */		    }		    if (*alpha != 1.) {			i__1 = *m;			for (i__ = 1; i__ <= i__1; ++i__) {			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]				    ;/* L300: */			}		    }/* L310: */		}	    } else {		i__1 = *n;		for (k = 1; k <= i__1; ++k) {		    if (nounit) {			temp = 1. / a[k + k * a_dim1];			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];/* L320: */			}		    }		    i__2 = *n;		    for (j = k + 1; j <= i__2; ++j) {			if (a[j + k * a_dim1] != 0.) {			    temp = a[j + k * a_dim1];			    i__3 = *m;			    for (i__ = 1; i__ <= i__3; ++i__) {				b[i__ + j * b_dim1] -= temp * b[i__ + k * 					b_dim1];/* L330: */			    }			}/* L340: */		    }		    if (*alpha != 1.) {			i__2 = *m;			for (i__ = 1; i__ <= i__2; ++i__) {			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]				    ;/* L350: */			}		    }/* L360: */		}	    }	}    }    return 0;/*     End of DTRSM . */} /* _starpu_dtrsm_ */
 |