performance_feedback.doxy 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page performanceFeedback Performance Feedback
  9. \section Using_the_Temanejo_task_debugger Using the Temanejo task debugger
  10. StarPU can connect to Temanejo (see
  11. http://www.hlrs.de/temanejo), to permit
  12. nice visual task debugging. To do so, build Temanejo's <c>libayudame.so</c>,
  13. install <c>Ayudame.h</c> to e.g. <c>/usr/local/include</c>, apply the
  14. <c>tools/patch-ayudame</c> to it to fix C build, re-<c>./configure</c>, make
  15. sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path
  16. to your application, any options you want to pass it, the path to libayudame.so.
  17. Make sure to specify at least the same number of CPUs in the dialog box as your
  18. machine has, otherwise an error will happen during execution. Future versions
  19. of Temanejo should be able to tell StarPU the number of CPUs to use.
  20. Tag numbers have to be below <c>4000000000000000000ULL</c> to be usable for
  21. Temanejo (so as to distinguish them from tasks).
  22. \section On-line_performance_feedback On-line performance feedback
  23. \subsection Enabling_on-line_performance_monitoring Enabling on-line performance monitoring
  24. In order to enable online performance monitoring, the application can
  25. call starpu_profiling_status_set() with the parameter
  26. ::STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring
  27. is already enabled or not by calling starpu_profiling_status_get().
  28. Enabling monitoring also reinitialize all previously collected
  29. feedback. The <c>STARPU_PROFILING</c> environment variable can also be
  30. set to 1 to achieve the same effect.
  31. Likewise, performance monitoring is stopped by calling
  32. starpu_profiling_status_set() with the parameter
  33. ::STARPU_PROFILING_DISABLE. Note that this does not reset the
  34. performance counters so that the application may consult them later
  35. on.
  36. More details about the performance monitoring API are available in section
  37. \ref Profiling_API.
  38. \subsection Per-Task_feedback Per-task feedback
  39. If profiling is enabled, a pointer to a struct
  40. starpu_profiling_task_info is put in the field
  41. starpu_task::profiling_info when a task terminates. This structure is
  42. automatically destroyed when the task structure is destroyed, either
  43. automatically or by calling starpu_task_destroy().
  44. The structure starpu_profiling_task_info indicates the date when the
  45. task was submitted (<c>submit_time</c>), started (<c>start_time</c>), and
  46. terminated (<c>end_time</c>), relative to the initialization of
  47. StarPU with starpu_init(). It also specifies the identifier of the worker
  48. that has executed the task (<c>workerid</c>).
  49. These date are stored as <c>timespec</c> structures which the user may convert
  50. into micro-seconds using the helper function
  51. starpu_timing_timespec_to_us().
  52. It it worth noting that the application may directly access this structure from
  53. the callback executed at the end of the task. The structure starpu_task
  54. associated to the callback currently being executed is indeed accessible with
  55. the function starpu_task_get_current().
  56. \subsection Per-codelet_feedback Per-codelet feedback
  57. The field starpu_codelet::per_worker_stats is
  58. an array of counters. The i-th entry of the array is incremented every time a
  59. task implementing the codelet is executed on the i-th worker.
  60. This array is not reinitialized when profiling is enabled or disabled.
  61. \subsection Per-worker_feedback Per-worker feedback
  62. The second argument returned by the function
  63. starpu_profiling_worker_get_info() is a structure
  64. starpu_profiling_worker_info that gives statistics about the specified
  65. worker. This structure specifies when StarPU started collecting
  66. profiling information for that worker (<c>start_time</c>), the
  67. duration of the profiling measurement interval (<c>total_time</c>),
  68. the time spent executing kernels (<c>executing_time</c>), the time
  69. spent sleeping because there is no task to execute at all
  70. (<c>sleeping_time</c>), and the number of tasks that were executed
  71. while profiling was enabled. These values give an estimation of the
  72. proportion of time spent do real work, and the time spent either
  73. sleeping because there are not enough executable tasks or simply
  74. wasted in pure StarPU overhead.
  75. Calling starpu_profiling_worker_get_info() resets the profiling
  76. information associated to a worker.
  77. When an FxT trace is generated (see \ref Generating_traces_with_FxT), it is also
  78. possible to use the tool <c>starpu_workers_activity</c> (see \ref
  79. Monitoring_activity) to generate a graphic showing the evolution of
  80. these values during the time, for the different workers.
  81. \subsection Bus-related_feedback Bus-related feedback
  82. TODO: ajouter STARPU_BUS_STATS
  83. \internal
  84. how to enable/disable performance monitoring
  85. what kind of information do we get ?
  86. \endinternal
  87. The bus speed measured by StarPU can be displayed by using the tool
  88. <c>starpu_machine_display</c>, for instance:
  89. \verbatim
  90. StarPU has found:
  91. 3 CUDA devices
  92. CUDA 0 (Tesla C2050 02:00.0)
  93. CUDA 1 (Tesla C2050 03:00.0)
  94. CUDA 2 (Tesla C2050 84:00.0)
  95. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  96. RAM 0.000000 5176.530428 5176.492994 5191.710722
  97. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  98. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  99. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  100. \endverbatim
  101. \subsection StarPU-Top_interface StarPU-Top interface
  102. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  103. application and permits the user to change parameters on the fly.
  104. Variables to be monitored can be registered by calling the functions
  105. starpu_top_add_data_boolean(), starpu_top_add_data_integer(),
  106. starpu_top_add_data_float(), e.g.:
  107. \code{.c}
  108. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  109. \endcode
  110. The application should then call starpu_top_init_and_wait() to give its name
  111. and wait for StarPU-Top to get a start request from the user. The name is used
  112. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  113. \code{.c}
  114. starpu_top_init_and_wait("the application");
  115. \endcode
  116. The new values can then be provided thanks to
  117. starpu_top_update_data_boolean(), starpu_top_update_data_integer(),
  118. starpu_top_update_data_float(), e.g.:
  119. \code{.c}
  120. starpu_top_update_data_integer(data, mynum);
  121. \endcode
  122. Updateable parameters can be registered thanks to starpu_top_register_parameter_boolean(), starpu_top_register_parameter_integer(), starpu_top_register_parameter_float(), e.g.:
  123. \code{.c}
  124. float alpha;
  125. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  126. \endcode
  127. <c>modif_hook</c> is a function which will be called when the parameter is being modified, it can for instance print the new value:
  128. \code{.c}
  129. void modif_hook(struct starpu_top_param *d) {
  130. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  131. }
  132. \endcode
  133. Task schedulers should notify StarPU-Top when it has decided when a task will be
  134. scheduled, so that it can show it in its Gantt chart, for instance:
  135. \code{.c}
  136. starpu_top_task_prevision(task, workerid, begin, end);
  137. \endcode
  138. Starting StarPU-Top (StarPU-Top is started via the binary
  139. <c>starpu_top</c>.) and the application can be done two ways:
  140. <ul>
  141. <li> The application is started by hand on some machine (and thus already
  142. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  143. checkbox should be unchecked, and the hostname and port (default is 2011) on
  144. which the application is already running should be specified. Clicking on the
  145. connection button will thus connect to the already-running application.
  146. </li>
  147. <li> StarPU-Top is started first, and clicking on the connection button will
  148. start the application itself (possibly on a remote machine). The SSH checkbox
  149. should be checked, and a command line provided, e.g.:
  150. \verbatim
  151. $ ssh myserver STARPU_SCHED=dmda ./application
  152. \endverbatim
  153. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  154. \verbatim
  155. $ ssh -L 2011:localhost:2011 myserver STARPU_SCHED=dmda ./application
  156. \endverbatim
  157. and "localhost" should be used as IP Address to connect to.
  158. </li>
  159. </ul>
  160. \section Off-line_performance_feedback Off-line performance feedback
  161. \subsection Generating_traces_with_FxT Generating traces with FxT
  162. StarPU can use the FxT library (see
  163. https://savannah.nongnu.org/projects/fkt/) to generate traces
  164. with a limited runtime overhead.
  165. You can either get a tarball:
  166. \verbatim
  167. $ wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.11.tar.gz
  168. \endverbatim
  169. or use the FxT library from CVS (autotools are required):
  170. \verbatim
  171. $ cvs -d :pserver:anonymous\@cvs.sv.gnu.org:/sources/fkt co FxT
  172. $ ./bootstrap
  173. \endverbatim
  174. Compiling and installing the FxT library in the <c>$FXTDIR</c> path is
  175. done following the standard procedure:
  176. \verbatim
  177. $ ./configure --prefix=$FXTDIR
  178. $ make
  179. $ make install
  180. \endverbatim
  181. In order to have StarPU to generate traces, StarPU should be configured with
  182. the <c>--with-fxt</c> option:
  183. \verbatim
  184. $ ./configure --with-fxt=$FXTDIR
  185. \endverbatim
  186. Or you can simply point the <c>PKG_CONFIG_PATH</c> to
  187. <c>$FXTDIR/lib/pkgconfig</c> and pass <c>--with-fxt</c> to <c>./configure</c>
  188. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  189. starpu_shutdown()). The trace is a binary file whose name has the form
  190. <c>prof_file_XXX_YYY</c> where <c>XXX</c> is the user name, and
  191. <c>YYY</c> is the pid of the process that used StarPU. This file is saved in the
  192. <c>/tmp/</c> directory by default, or by the directory specified by
  193. the <c>STARPU_FXT_PREFIX</c> environment variable.
  194. \subsection Creating_a_Gantt_Diagram Creating a Gantt Diagram
  195. When the FxT trace file <c>filename</c> has been generated, it is possible to
  196. generate a trace in the Paje format by calling:
  197. \verbatim
  198. $ starpu_fxt_tool -i filename
  199. \endverbatim
  200. Or alternatively, setting the <c>STARPU_GENERATE_TRACE</c> environment variable
  201. to <c>1</c> before application execution will make StarPU do it automatically at
  202. application shutdown.
  203. This will create a <c>paje.trace</c> file in the current directory that
  204. can be inspected with the <a href="http://vite.gforge.inria.fr/">ViTE trace
  205. visualizing open-source tool</a>. It is possible to open the
  206. <c>paje.trace</c> file with ViTE by using the following command:
  207. \verbatim
  208. $ vite paje.trace
  209. \endverbatim
  210. To get names of tasks instead of "unknown", fill the optional <c>name</c> field
  211. of the codelets, or use a performance model for them.
  212. In the MPI execution case, collect the trace files from the MPI nodes, and
  213. specify them all on the <c>starpu_fxt_tool</c> command, for instance:
  214. \verbatim
  215. $ starpu_fxt_tool -i filename1 -i filename2
  216. \endverbatim
  217. By default, all tasks are displayed using a green color. To display tasks with
  218. varying colors, pass option <c>-c</c> to <c>starpu_fxt_tool</c>.
  219. Traces can also be inspected by hand by using the <c>fxt_print</c> tool, for instance:
  220. \verbatim
  221. $ fxt_print -o -f filename
  222. \endverbatim
  223. Timings are in nanoseconds (while timings as seen in <c>vite</c> are in milliseconds).
  224. \subsection Creating_a_DAG_with_graphviz Creating a DAG with graphviz
  225. When the FxT trace file <c>filename</c> has been generated, it is possible to
  226. generate a task graph in the DOT format by calling:
  227. \verbatim
  228. $ starpu_fxt_tool -i filename
  229. \endverbatim
  230. This will create a <c>dag.dot</c> file in the current directory. This file is a
  231. task graph described using the DOT language. It is possible to get a
  232. graphical output of the graph by using the graphviz library:
  233. \verbatim
  234. $ dot -Tpdf dag.dot -o output.pdf
  235. \endverbatim
  236. \subsection Monitoring_activity Monitoring activity
  237. When the FxT trace file <c>filename</c> has been generated, it is possible to
  238. generate an activity trace by calling:
  239. \verbatim
  240. $ starpu_fxt_tool -i filename
  241. \endverbatim
  242. This will create an <c>activity.data</c> file in the current
  243. directory. A profile of the application showing the activity of StarPU
  244. during the execution of the program can be generated:
  245. \verbatim
  246. $ starpu_workers_activity activity.data
  247. \endverbatim
  248. This will create a file named <c>activity.eps</c> in the current directory.
  249. This picture is composed of two parts.
  250. The first part shows the activity of the different workers. The green sections
  251. indicate which proportion of the time was spent executed kernels on the
  252. processing unit. The red sections indicate the proportion of time spent in
  253. StartPU: an important overhead may indicate that the granularity may be too
  254. low, and that bigger tasks may be appropriate to use the processing unit more
  255. efficiently. The black sections indicate that the processing unit was blocked
  256. because there was no task to process: this may indicate a lack of parallelism
  257. which may be alleviated by creating more tasks when it is possible.
  258. The second part of the <c>activity.eps</c> picture is a graph showing the
  259. evolution of the number of tasks available in the system during the execution.
  260. Ready tasks are shown in black, and tasks that are submitted but not
  261. schedulable yet are shown in grey.
  262. \section Performance_of_codelets Performance of codelets
  263. The performance model of codelets (see \ref Performance_model_example) can be examined by using the
  264. tool <c>starpu_perfmodel_display</c>:
  265. \verbatim
  266. $ starpu_perfmodel_display -l
  267. file: <malloc_pinned.hannibal>
  268. file: <starpu_slu_lu_model_21.hannibal>
  269. file: <starpu_slu_lu_model_11.hannibal>
  270. file: <starpu_slu_lu_model_22.hannibal>
  271. file: <starpu_slu_lu_model_12.hannibal>
  272. \endverbatim
  273. Here, the codelets of the lu example are available. We can examine the
  274. performance of the 22 kernel (in micro-seconds), which is history-based:
  275. \verbatim
  276. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  277. performance model for cpu
  278. # hash size mean dev n
  279. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  280. performance model for cuda_0
  281. # hash size mean dev n
  282. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  283. performance model for cuda_1
  284. # hash size mean dev n
  285. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  286. performance model for cuda_2
  287. # hash size mean dev n
  288. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  289. \endverbatim
  290. We can see that for the given size, over a sample of a few hundreds of
  291. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  292. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  293. CPUs.
  294. This tool can also be used for regression-based performance models. It will then
  295. display the regression formula, and in the case of non-linear regression, the
  296. same performance log as for history-based performance models:
  297. \verbatim
  298. $ starpu_perfmodel_display -s non_linear_memset_regression_based
  299. performance model for cpu_impl_0
  300. Regression : #sample = 1400
  301. Linear: y = alpha size ^ beta
  302. alpha = 1.335973e-03
  303. beta = 8.024020e-01
  304. Non-Linear: y = a size ^b + c
  305. a = 5.429195e-04
  306. b = 8.654899e-01
  307. c = 9.009313e-01
  308. # hash size mean stddev n
  309. a3d3725e 4096 4.763200e+00 7.650928e-01 100
  310. 870a30aa 8192 1.827970e+00 2.037181e-01 100
  311. 48e988e9 16384 2.652800e+00 1.876459e-01 100
  312. 961e65d2 32768 4.255530e+00 3.518025e-01 100
  313. ...
  314. \endverbatim
  315. The same can also be achieved by using StarPU's library API, see
  316. \ref Performance_Model_API and notably the function
  317. starpu_perfmodel_load_symbol(). The source code of the tool
  318. <c>starpu_perfmodel_display</c> can be a useful example.
  319. The tool <c>starpu_perfmodel_plot</c> can be used to draw performance
  320. models. It writes a <c>.gp</c> file in the current directory, to be
  321. run in the <c>gnuplot</c> tool, which shows the corresponding curve.
  322. When the <c>flops</c> field of tasks is set, <c>starpu_perfmodel_plot</c> can
  323. directly draw a GFlops curve, by simply adding the <c>-f</c> option:
  324. \verbatim
  325. $ starpu_perfmodel_display -f -s chol_model_11
  326. \endverbatim
  327. This will however disable displaying the regression model, for which we can not
  328. compute GFlops.
  329. When the FxT trace file <c>filename</c> has been generated, it is possible to
  330. get a profiling of each codelet by calling:
  331. \verbatim
  332. $ starpu_fxt_tool -i filename
  333. $ starpu_codelet_profile distrib.data codelet_name
  334. \endverbatim
  335. This will create profiling data files, and a <c>.gp</c> file in the current
  336. directory, which draws the distribution of codelet time over the application
  337. execution, according to data input size.
  338. This is also available in the tool <c>starpu_perfmodel_plot</c>, by passing it
  339. the fxt trace:
  340. \verbatim
  341. $ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0
  342. \endverbatim
  343. It will produce a <c>.gp</c> file which contains both the performance model
  344. curves, and the profiling measurements.
  345. If you have the R statistical tool installed, you can additionally use
  346. \verbatim
  347. $ starpu_codelet_histo_profile distrib.data
  348. \endverbatim
  349. Which will create one pdf file per codelet and per input size, showing a
  350. histogram of the codelet execution time distribution.
  351. \section Theoretical_lower_bound_on_execution_time Theoretical lower bound on execution time
  352. StarPU can record a trace of what tasks are needed to complete the
  353. application, and then, by using a linear system, provide a theoretical lower
  354. bound of the execution time (i.e. with an ideal scheduling).
  355. The computed bound is not really correct when not taking into account
  356. dependencies, but for an application which have enough parallelism, it is very
  357. near to the bound computed with dependencies enabled (which takes a huge lot
  358. more time to compute), and thus provides a good-enough estimation of the ideal
  359. execution time.
  360. \ref Theoretical_lower_bound_on_execution_time provides an example on how to
  361. use this.
  362. \section Memory_feedback Memory feedback
  363. It is possible to enable memory statistics. To do so, you need to pass the option
  364. <c>--enable-memory-stats</c> when running configure. It is then
  365. possible to call the function starpu_display_memory_stats() to
  366. display statistics about the current data handles registered within StarPU.
  367. Moreover, statistics will be displayed at the end of the execution on
  368. data handles which have not been cleared out. This can be disabled by
  369. setting the environment variable <c>STARPU_MEMORY_STATS</c> to 0.
  370. For example, if you do not unregister data at the end of the complex
  371. example, you will get something similar to:
  372. \verbatim
  373. $ STARPU_MEMORY_STATS=0 ./examples/interface/complex
  374. Complex[0] = 45.00 + 12.00 i
  375. Complex[0] = 78.00 + 78.00 i
  376. Complex[0] = 45.00 + 12.00 i
  377. Complex[0] = 45.00 + 12.00 i
  378. \endverbatim
  379. \verbatim
  380. $ STARPU_MEMORY_STATS=1 ./examples/interface/complex
  381. Complex[0] = 45.00 + 12.00 i
  382. Complex[0] = 78.00 + 78.00 i
  383. Complex[0] = 45.00 + 12.00 i
  384. Complex[0] = 45.00 + 12.00 i
  385. #---------------------
  386. Memory stats:
  387. #-------
  388. Data on Node #3
  389. #-----
  390. Data : 0x553ff40
  391. Size : 16
  392. #--
  393. Data access stats
  394. /!\ Work Underway
  395. Node #0
  396. Direct access : 4
  397. Loaded (Owner) : 0
  398. Loaded (Shared) : 0
  399. Invalidated (was Owner) : 0
  400. Node #3
  401. Direct access : 0
  402. Loaded (Owner) : 0
  403. Loaded (Shared) : 1
  404. Invalidated (was Owner) : 0
  405. #-----
  406. Data : 0x5544710
  407. Size : 16
  408. #--
  409. Data access stats
  410. /!\ Work Underway
  411. Node #0
  412. Direct access : 2
  413. Loaded (Owner) : 0
  414. Loaded (Shared) : 1
  415. Invalidated (was Owner) : 1
  416. Node #3
  417. Direct access : 0
  418. Loaded (Owner) : 1
  419. Loaded (Shared) : 0
  420. Invalidated (was Owner) : 0
  421. \endverbatim
  422. \section Data_statistics Data statistics
  423. Different data statistics can be displayed at the end of the execution
  424. of the application. To enable them, you need to pass the option
  425. <c>--enable-stats</c> when calling <c>configure</c>. When calling
  426. starpu_shutdown() various statistics will be displayed,
  427. execution, MSI cache statistics, allocation cache statistics, and data
  428. transfer statistics. The display can be disabled by setting the
  429. environment variable <c>STARPU_STATS</c> to 0.
  430. \verbatim
  431. $ ./examples/cholesky/cholesky_tag
  432. Computation took (in ms)
  433. 518.16
  434. Synthetic GFlops : 44.21
  435. #---------------------
  436. MSI cache stats :
  437. TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
  438. ...
  439. \endverbatim
  440. \verbatim
  441. $ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
  442. Computation took (in ms)
  443. 518.16
  444. Synthetic GFlops : 44.21
  445. \endverbatim
  446. \internal
  447. TODO: data transfer stats are similar to the ones displayed when
  448. setting STARPU_BUS_STATS
  449. \endinternal
  450. */