parallel_redux_homogeneous_tasks_data.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. * Copyright (C) 2016 Bérangère Subervie
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <stdbool.h>
  18. #include <starpu.h>
  19. #include "../helper.h"
  20. /* Run a series of tasks with homogeneous execution time and redux data */
  21. #define TIME 0.010
  22. #ifdef STARPU_QUICK_CHECK
  23. #define TASK_COEFFICIENT 20
  24. #define MARGIN 0.20
  25. #else
  26. #define TASK_COEFFICIENT 100
  27. #define MARGIN 0.10
  28. #endif
  29. #define SECONDS_SCALE_COEFFICIENT_TIMING_NOW 1000000
  30. #define NB_FLOAT 4000000
  31. void wait_homogeneous(void *descr[], void *_args)
  32. {
  33. (void)descr;
  34. (void)_args;
  35. starpu_sleep(TIME);
  36. }
  37. double cost_function(struct starpu_task *t, struct starpu_perfmodel_arch *a, unsigned i)
  38. {
  39. (void)t; (void)a; (void)i;
  40. return TIME * 1000000;
  41. }
  42. static struct starpu_perfmodel perf_model =
  43. {
  44. .type = STARPU_PER_ARCH,
  45. .arch_cost_function = cost_function,
  46. };
  47. static struct starpu_codelet cl =
  48. {
  49. .cpu_funcs = { wait_homogeneous },
  50. .cuda_funcs = { wait_homogeneous },
  51. .opencl_funcs = { wait_homogeneous },
  52. .cpu_funcs_name = { "wait_homogeneous" },
  53. .nbuffers = 1,
  54. .modes = {STARPU_REDUX},
  55. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  56. .model = &perf_model,
  57. .name = "cl",
  58. };
  59. static struct starpu_perfmodel perf_model_init =
  60. {
  61. .type = STARPU_PER_ARCH,
  62. .arch_cost_function = cost_function,
  63. };
  64. static struct starpu_codelet cl_init =
  65. {
  66. .cpu_funcs = { wait_homogeneous },
  67. .cuda_funcs = { wait_homogeneous },
  68. .opencl_funcs = { wait_homogeneous },
  69. .cpu_funcs_name = { "wait_homogeneous" },
  70. .nbuffers = 1,
  71. .modes = {STARPU_RW},
  72. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  73. .model = &perf_model_init,
  74. .name = "init",
  75. };
  76. static struct starpu_perfmodel perf_model_redux =
  77. {
  78. .type = STARPU_PER_ARCH,
  79. .arch_cost_function = cost_function,
  80. };
  81. static struct starpu_codelet cl_redux =
  82. {
  83. .cpu_funcs = { wait_homogeneous },
  84. .cuda_funcs = { wait_homogeneous },
  85. .opencl_funcs = { wait_homogeneous },
  86. .cpu_funcs_name = { "wait_homogeneous" },
  87. .nbuffers = 2,
  88. .modes = {STARPU_RW, STARPU_R},
  89. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  90. .model = &perf_model_redux,
  91. .name = "redux",
  92. };
  93. int main(int argc, char *argv[])
  94. {
  95. int ret;
  96. ret = starpu_initialize(NULL, &argc, &argv);
  97. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  98. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  99. unsigned nb_tasks, nb_workers;
  100. double begin_time, end_time, time_m, time_s, speed_up, expected_speed_up, percentage_expected_speed_up;
  101. bool check, check_sup;
  102. nb_workers = starpu_worker_get_count_by_type(STARPU_CPU_WORKER) + starpu_worker_get_count_by_type(STARPU_CUDA_WORKER) + starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER);
  103. nb_tasks = nb_workers*TASK_COEFFICIENT;
  104. /* We consider a vector of float that is initialized just as any of C
  105. * data */
  106. float *vector;
  107. starpu_data_handle_t vector_handle;
  108. unsigned i;
  109. vector = calloc(NB_FLOAT, sizeof(float));
  110. #ifndef STARPU_SIMGRID
  111. for (i = 0; i < NB_FLOAT; i++)
  112. vector[i] = (i+1.0f);
  113. #endif
  114. /* Tell StaPU to associate the "vector" vector with the "vector_handle"
  115. * identifier. When a task needs to access a piece of data, it should
  116. * refer to the handle that is associated to it.
  117. * In the case of the "vector" data interface:
  118. * - the first argument of the registration method is a pointer to the
  119. * handle that should describe the data
  120. * - the second argument is the memory node where the data (ie. "vector")
  121. * resides initially: STARPU_MAIN_RAM stands for an address in main memory, as
  122. * opposed to an adress on a GPU for instance.
  123. * - the third argument is the adress of the vector in RAM
  124. * - the fourth argument is the number of elements in the vector
  125. * - the fifth argument is the size of each element.
  126. */
  127. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NB_FLOAT, sizeof(vector[0]));
  128. starpu_data_set_reduction_methods(vector_handle, &cl_redux, &cl_init);
  129. begin_time = starpu_timing_now();
  130. /*execution des tasks*/
  131. for (i=0; i<nb_tasks; i++)
  132. starpu_task_insert(&cl, STARPU_REDUX, vector_handle, 0);
  133. starpu_data_wont_use(vector_handle);
  134. starpu_task_wait_for_all();
  135. end_time = starpu_timing_now();
  136. starpu_data_unregister(vector_handle);
  137. /*on determine si le temps mesure est satisfaisant ou pas*/
  138. time_m = (end_time - begin_time)/SECONDS_SCALE_COEFFICIENT_TIMING_NOW; //pour ramener en secondes
  139. time_s = nb_tasks * TIME;
  140. speed_up = time_s/time_m;
  141. expected_speed_up = nb_workers;
  142. percentage_expected_speed_up = 100 * (speed_up/expected_speed_up);
  143. check = speed_up >= ((1 - MARGIN) * expected_speed_up);
  144. check_sup = speed_up <= ((1 + MARGIN) * expected_speed_up);
  145. printf("measured time = %f seconds\nsequential time = %f seconds\nspeed up = %f\nnumber of workers = %u\nnumber of tasks = %u\nexpected speed up = %f\npercentage of expected speed up %.2f%%\n", time_m, time_s, speed_up, nb_workers, nb_tasks, expected_speed_up, percentage_expected_speed_up);
  146. starpu_shutdown();
  147. free(vector);
  148. //test reussi ou test echoue
  149. if (check && check_sup)
  150. {
  151. return EXIT_SUCCESS;
  152. }
  153. else
  154. {
  155. return EXIT_FAILURE;
  156. }
  157. }