| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229 | /* dtrevc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static logical c_false = FALSE_;static integer c__1 = 1;static doublereal c_b22 = 1.;static doublereal c_b25 = 0.;static integer c__2 = 2;static logical c_true = TRUE_;/* Subroutine */ int _starpu_dtrevc_(char *side, char *howmny, logical *select, 	integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *	ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m, 	doublereal *work, integer *info){    /* System generated locals */    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 	    i__2, i__3;    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k;    doublereal x[4]	/* was [2][2] */;    integer j1, j2, n2, ii, ki, ip, is;    doublereal wi, wr, rec, ulp, beta, emax;    logical pair;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    logical allv;    integer ierr;    doublereal unfl, ovfl, smin;    logical over;    doublereal vmax;    integer jnxt;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal scale;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    doublereal remax;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical leftv, bothv;    extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    doublereal vcrit;    logical somev;    doublereal xnorm;    extern /* Subroutine */ int _starpu_dlaln2_(logical *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *),	     _starpu_dlabad_(doublereal *, doublereal *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    logical rightv;    doublereal smlnum;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTREVC computes some or all of the right and/or left eigenvectors of *//*  a real upper quasi-triangular matrix T. *//*  Matrices of this type are produced by the Schur factorization of *//*  a real general matrix:  A = Q*T*Q**T, as computed by DHSEQR. *//*  The right eigenvector x and the left eigenvector y of T corresponding *//*  to an eigenvalue w are defined by: *//*     T*x = w*x,     (y**H)*T = w*(y**H) *//*  where y**H denotes the conjugate transpose of y. *//*  The eigenvalues are not input to this routine, but are read directly *//*  from the diagonal blocks of T. *//*  This routine returns the matrices X and/or Y of right and left *//*  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an *//*  input matrix.  If Q is the orthogonal factor that reduces a matrix *//*  A to Schur form T, then Q*X and Q*Y are the matrices of right and *//*  left eigenvectors of A. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'R':  compute right eigenvectors only; *//*          = 'L':  compute left eigenvectors only; *//*          = 'B':  compute both right and left eigenvectors. *//*  HOWMNY  (input) CHARACTER*1 *//*          = 'A':  compute all right and/or left eigenvectors; *//*          = 'B':  compute all right and/or left eigenvectors, *//*                  backtransformed by the matrices in VR and/or VL; *//*          = 'S':  compute selected right and/or left eigenvectors, *//*                  as indicated by the logical array SELECT. *//*  SELECT  (input/output) LOGICAL array, dimension (N) *//*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be *//*          computed. *//*          If w(j) is a real eigenvalue, the corresponding real *//*          eigenvector is computed if SELECT(j) is .TRUE.. *//*          If w(j) and w(j+1) are the real and imaginary parts of a *//*          complex eigenvalue, the corresponding complex eigenvector is *//*          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and *//*          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to *//*          .FALSE.. *//*          Not referenced if HOWMNY = 'A' or 'B'. *//*  N       (input) INTEGER *//*          The order of the matrix T. N >= 0. *//*  T       (input) DOUBLE PRECISION array, dimension (LDT,N) *//*          The upper quasi-triangular matrix T in Schur canonical form. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= max(1,N). *//*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) *//*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must *//*          contain an N-by-N matrix Q (usually the orthogonal matrix Q *//*          of Schur vectors returned by DHSEQR). *//*          On exit, if SIDE = 'L' or 'B', VL contains: *//*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T; *//*          if HOWMNY = 'B', the matrix Q*Y; *//*          if HOWMNY = 'S', the left eigenvectors of T specified by *//*                           SELECT, stored consecutively in the columns *//*                           of VL, in the same order as their *//*                           eigenvalues. *//*          A complex eigenvector corresponding to a complex eigenvalue *//*          is stored in two consecutive columns, the first holding the *//*          real part, and the second the imaginary part. *//*          Not referenced if SIDE = 'R'. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the array VL.  LDVL >= 1, and if *//*          SIDE = 'L' or 'B', LDVL >= N. *//*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) *//*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must *//*          contain an N-by-N matrix Q (usually the orthogonal matrix Q *//*          of Schur vectors returned by DHSEQR). *//*          On exit, if SIDE = 'R' or 'B', VR contains: *//*          if HOWMNY = 'A', the matrix X of right eigenvectors of T; *//*          if HOWMNY = 'B', the matrix Q*X; *//*          if HOWMNY = 'S', the right eigenvectors of T specified by *//*                           SELECT, stored consecutively in the columns *//*                           of VR, in the same order as their *//*                           eigenvalues. *//*          A complex eigenvector corresponding to a complex eigenvalue *//*          is stored in two consecutive columns, the first holding the *//*          real part and the second the imaginary part. *//*          Not referenced if SIDE = 'L'. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the array VR.  LDVR >= 1, and if *//*          SIDE = 'R' or 'B', LDVR >= N. *//*  MM      (input) INTEGER *//*          The number of columns in the arrays VL and/or VR. MM >= M. *//*  M       (output) INTEGER *//*          The number of columns in the arrays VL and/or VR actually *//*          used to store the eigenvectors. *//*          If HOWMNY = 'A' or 'B', M is set to N. *//*          Each selected real eigenvector occupies one column and each *//*          selected complex eigenvector occupies two columns. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The algorithm used in this program is basically backward (forward) *//*  substitution, with scaling to make the the code robust against *//*  possible overflow. *//*  Each eigenvector is normalized so that the element of largest *//*  magnitude has magnitude 1; here the magnitude of a complex number *//*  (x,y) is taken to be |x| + |y|. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters */    /* Parameter adjustments */    --select;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --work;    /* Function Body */    bothv = _starpu_lsame_(side, "B");    rightv = _starpu_lsame_(side, "R") || bothv;    leftv = _starpu_lsame_(side, "L") || bothv;    allv = _starpu_lsame_(howmny, "A");    over = _starpu_lsame_(howmny, "B");    somev = _starpu_lsame_(howmny, "S");    *info = 0;    if (! rightv && ! leftv) {	*info = -1;    } else if (! allv && ! over && ! somev) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*ldt < max(1,*n)) {	*info = -6;    } else if (*ldvl < 1 || leftv && *ldvl < *n) {	*info = -8;    } else if (*ldvr < 1 || rightv && *ldvr < *n) {	*info = -10;    } else {/*        Set M to the number of columns required to store the selected *//*        eigenvectors, standardize the array SELECT if necessary, and *//*        test MM. */	if (somev) {	    *m = 0;	    pair = FALSE_;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (pair) {		    pair = FALSE_;		    select[j] = FALSE_;		} else {		    if (j < *n) {			if (t[j + 1 + j * t_dim1] == 0.) {			    if (select[j]) {				++(*m);			    }			} else {			    pair = TRUE_;			    if (select[j] || select[j + 1]) {				select[j] = TRUE_;				*m += 2;			    }			}		    } else {			if (select[*n]) {			    ++(*m);			}		    }		}/* L10: */	    }	} else {	    *m = *n;	}	if (*mm < *m) {	    *info = -11;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTREVC", &i__1);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }/*     Set the constants to control overflow. */    unfl = _starpu_dlamch_("Safe minimum");    ovfl = 1. / unfl;    _starpu_dlabad_(&unfl, &ovfl);    ulp = _starpu_dlamch_("Precision");    smlnum = unfl * (*n / ulp);    bignum = (1. - ulp) / smlnum;/*     Compute 1-norm of each column of strictly upper triangular *//*     part of T to control overflow in triangular solver. */    work[1] = 0.;    i__1 = *n;    for (j = 2; j <= i__1; ++j) {	work[j] = 0.;	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    work[j] += (d__1 = t[i__ + j * t_dim1], abs(d__1));/* L20: */	}/* L30: */    }/*     Index IP is used to specify the real or complex eigenvalue: *//*       IP = 0, real eigenvalue, *//*            1, first of conjugate complex pair: (wr,wi) *//*           -1, second of conjugate complex pair: (wr,wi) */    n2 = *n << 1;    if (rightv) {/*        Compute right eigenvectors. */	ip = 0;	is = *m;	for (ki = *n; ki >= 1; --ki) {	    if (ip == 1) {		goto L130;	    }	    if (ki == 1) {		goto L40;	    }	    if (t[ki + (ki - 1) * t_dim1] == 0.) {		goto L40;	    }	    ip = -1;L40:	    if (somev) {		if (ip == 0) {		    if (! select[ki]) {			goto L130;		    }		} else {		    if (! select[ki - 1]) {			goto L130;		    }		}	    }/*           Compute the KI-th eigenvalue (WR,WI). */	    wr = t[ki + ki * t_dim1];	    wi = 0.;	    if (ip != 0) {		wi = sqrt((d__1 = t[ki + (ki - 1) * t_dim1], abs(d__1))) * 			sqrt((d__2 = t[ki - 1 + ki * t_dim1], abs(d__2)));	    }/* Computing MAX */	    d__1 = ulp * (abs(wr) + abs(wi));	    smin = max(d__1,smlnum);	    if (ip == 0) {/*              Real right eigenvector */		work[ki + *n] = 1.;/*              Form right-hand side */		i__1 = ki - 1;		for (k = 1; k <= i__1; ++k) {		    work[k + *n] = -t[k + ki * t_dim1];/* L50: */		}/*              Solve the upper quasi-triangular system: *//*                 (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */		jnxt = ki - 1;		for (j = ki - 1; j >= 1; --j) {		    if (j > jnxt) {			goto L60;		    }		    j1 = j;		    j2 = j;		    jnxt = j - 1;		    if (j > 1) {			if (t[j + (j - 1) * t_dim1] != 0.) {			    j1 = j - 1;			    jnxt = j - 2;			}		    }		    if (j1 == j2) {/*                    1-by-1 diagonal block */			_starpu_dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, 				&ierr);/*                    Scale X(1,1) to avoid overflow when updating *//*                    the right-hand side. */			if (xnorm > 1.) {			    if (work[j] > bignum / xnorm) {				x[0] /= xnorm;				scale /= xnorm;			    }			}/*                    Scale if necessary */			if (scale != 1.) {			    _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);			}			work[j + *n] = x[0];/*                    Update right-hand side */			i__1 = j - 1;			d__1 = -x[0];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				*n + 1], &c__1);		    } else {/*                    2-by-2 diagonal block */			_starpu_dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b22, &t[j - 				1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &				work[j - 1 + *n], n, &wr, &c_b25, x, &c__2, &				scale, &xnorm, &ierr);/*                    Scale X(1,1) and X(2,1) to avoid overflow when *//*                    updating the right-hand side. */			if (xnorm > 1.) {/* Computing MAX */			    d__1 = work[j - 1], d__2 = work[j];			    beta = max(d__1,d__2);			    if (beta > bignum / xnorm) {				x[0] /= xnorm;				x[1] /= xnorm;				scale /= xnorm;			    }			}/*                    Scale if necessary */			if (scale != 1.) {			    _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);			}			work[j - 1 + *n] = x[0];			work[j + *n] = x[1];/*                    Update right-hand side */			i__1 = j - 2;			d__1 = -x[0];			_starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, 				&work[*n + 1], &c__1);			i__1 = j - 2;			d__1 = -x[1];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				*n + 1], &c__1);		    }L60:		    ;		}/*              Copy the vector x or Q*x to VR and normalize. */		if (! over) {		    _starpu_dcopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], &			    c__1);		    ii = _starpu_idamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);		    remax = 1. / (d__1 = vr[ii + is * vr_dim1], abs(d__1));		    _starpu_dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);		    i__1 = *n;		    for (k = ki + 1; k <= i__1; ++k) {			vr[k + is * vr_dim1] = 0.;/* L70: */		    }		} else {		    if (ki > 1) {			i__1 = ki - 1;			_starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &				work[*n + 1], &c__1, &work[ki + *n], &vr[ki * 				vr_dim1 + 1], &c__1);		    }		    ii = _starpu_idamax_(n, &vr[ki * vr_dim1 + 1], &c__1);		    remax = 1. / (d__1 = vr[ii + ki * vr_dim1], abs(d__1));		    _starpu_dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);		}	    } else {/*              Complex right eigenvector. *//*              Initial solve *//*                [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0. *//*                [ (T(KI,KI-1)   T(KI,KI)   )               ] */		if ((d__1 = t[ki - 1 + ki * t_dim1], abs(d__1)) >= (d__2 = t[			ki + (ki - 1) * t_dim1], abs(d__2))) {		    work[ki - 1 + *n] = 1.;		    work[ki + n2] = wi / t[ki - 1 + ki * t_dim1];		} else {		    work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1];		    work[ki + n2] = 1.;		}		work[ki + *n] = 0.;		work[ki - 1 + n2] = 0.;/*              Form right-hand side */		i__1 = ki - 2;		for (k = 1; k <= i__1; ++k) {		    work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) * 			    t_dim1];		    work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1];/* L80: */		}/*              Solve upper quasi-triangular system: *//*              (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2) */		jnxt = ki - 2;		for (j = ki - 2; j >= 1; --j) {		    if (j > jnxt) {			goto L90;		    }		    j1 = j;		    j2 = j;		    jnxt = j - 1;		    if (j > 1) {			if (t[j + (j - 1) * t_dim1] != 0.) {			    j1 = j - 1;			    jnxt = j - 2;			}		    }		    if (j1 == j2) {/*                    1-by-1 diagonal block */			_starpu_dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &wi, x, &c__2, &scale, &xnorm, &				ierr);/*                    Scale X(1,1) and X(1,2) to avoid overflow when *//*                    updating the right-hand side. */			if (xnorm > 1.) {			    if (work[j] > bignum / xnorm) {				x[0] /= xnorm;				x[2] /= xnorm;				scale /= xnorm;			    }			}/*                    Scale if necessary */			if (scale != 1.) {			    _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);			    _starpu_dscal_(&ki, &scale, &work[n2 + 1], &c__1);			}			work[j + *n] = x[0];			work[j + n2] = x[2];/*                    Update the right-hand side */			i__1 = j - 1;			d__1 = -x[0];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				*n + 1], &c__1);			i__1 = j - 1;			d__1 = -x[2];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				n2 + 1], &c__1);		    } else {/*                    2-by-2 diagonal block */			_starpu_dlaln2_(&c_false, &c__2, &c__2, &smin, &c_b22, &t[j - 				1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &				work[j - 1 + *n], n, &wr, &wi, x, &c__2, &				scale, &xnorm, &ierr);/*                    Scale X to avoid overflow when updating *//*                    the right-hand side. */			if (xnorm > 1.) {/* Computing MAX */			    d__1 = work[j - 1], d__2 = work[j];			    beta = max(d__1,d__2);			    if (beta > bignum / xnorm) {				rec = 1. / xnorm;				x[0] *= rec;				x[2] *= rec;				x[1] *= rec;				x[3] *= rec;				scale *= rec;			    }			}/*                    Scale if necessary */			if (scale != 1.) {			    _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);			    _starpu_dscal_(&ki, &scale, &work[n2 + 1], &c__1);			}			work[j - 1 + *n] = x[0];			work[j + *n] = x[1];			work[j - 1 + n2] = x[2];			work[j + n2] = x[3];/*                    Update the right-hand side */			i__1 = j - 2;			d__1 = -x[0];			_starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, 				&work[*n + 1], &c__1);			i__1 = j - 2;			d__1 = -x[1];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				*n + 1], &c__1);			i__1 = j - 2;			d__1 = -x[2];			_starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, 				&work[n2 + 1], &c__1);			i__1 = j - 2;			d__1 = -x[3];			_starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[				n2 + 1], &c__1);		    }L90:		    ;		}/*              Copy the vector x or Q*x to VR and normalize. */		if (! over) {		    _starpu_dcopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1 			    + 1], &c__1);		    _starpu_dcopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], &			    c__1);		    emax = 0.;		    i__1 = ki;		    for (k = 1; k <= i__1; ++k) {/* Computing MAX */			d__3 = emax, d__4 = (d__1 = vr[k + (is - 1) * vr_dim1]				, abs(d__1)) + (d__2 = vr[k + is * vr_dim1], 				abs(d__2));			emax = max(d__3,d__4);/* L100: */		    }		    remax = 1. / emax;		    _starpu_dscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);		    _starpu_dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);		    i__1 = *n;		    for (k = ki + 1; k <= i__1; ++k) {			vr[k + (is - 1) * vr_dim1] = 0.;			vr[k + is * vr_dim1] = 0.;/* L110: */		    }		} else {		    if (ki > 2) {			i__1 = ki - 2;			_starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &				work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[(				ki - 1) * vr_dim1 + 1], &c__1);			i__1 = ki - 2;			_starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &				work[n2 + 1], &c__1, &work[ki + n2], &vr[ki * 				vr_dim1 + 1], &c__1);		    } else {			_starpu_dscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1 				+ 1], &c__1);			_starpu_dscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], &				c__1);		    }		    emax = 0.;		    i__1 = *n;		    for (k = 1; k <= i__1; ++k) {/* Computing MAX */			d__3 = emax, d__4 = (d__1 = vr[k + (ki - 1) * vr_dim1]				, abs(d__1)) + (d__2 = vr[k + ki * vr_dim1], 				abs(d__2));			emax = max(d__3,d__4);/* L120: */		    }		    remax = 1. / emax;		    _starpu_dscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);		    _starpu_dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);		}	    }	    --is;	    if (ip != 0) {		--is;	    }L130:	    if (ip == 1) {		ip = 0;	    }	    if (ip == -1) {		ip = 1;	    }/* L140: */	}    }    if (leftv) {/*        Compute left eigenvectors. */	ip = 0;	is = 1;	i__1 = *n;	for (ki = 1; ki <= i__1; ++ki) {	    if (ip == -1) {		goto L250;	    }	    if (ki == *n) {		goto L150;	    }	    if (t[ki + 1 + ki * t_dim1] == 0.) {		goto L150;	    }	    ip = 1;L150:	    if (somev) {		if (! select[ki]) {		    goto L250;		}	    }/*           Compute the KI-th eigenvalue (WR,WI). */	    wr = t[ki + ki * t_dim1];	    wi = 0.;	    if (ip != 0) {		wi = sqrt((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1))) * 			sqrt((d__2 = t[ki + 1 + ki * t_dim1], abs(d__2)));	    }/* Computing MAX */	    d__1 = ulp * (abs(wr) + abs(wi));	    smin = max(d__1,smlnum);	    if (ip == 0) {/*              Real left eigenvector. */		work[ki + *n] = 1.;/*              Form right-hand side */		i__2 = *n;		for (k = ki + 1; k <= i__2; ++k) {		    work[k + *n] = -t[ki + k * t_dim1];/* L160: */		}/*              Solve the quasi-triangular system: *//*                 (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK */		vmax = 1.;		vcrit = bignum;		jnxt = ki + 1;		i__2 = *n;		for (j = ki + 1; j <= i__2; ++j) {		    if (j < jnxt) {			goto L170;		    }		    j1 = j;		    j2 = j;		    jnxt = j + 1;		    if (j < *n) {			if (t[j + 1 + j * t_dim1] != 0.) {			    j2 = j + 1;			    jnxt = j + 2;			}		    }		    if (j1 == j2) {/*                    1-by-1 diagonal block *//*                    Scale if necessary to avoid overflow when forming *//*                    the right-hand side. */			if (work[j] > vcrit) {			    rec = 1. / vmax;			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);			    vmax = 1.;			    vcrit = bignum;			}			i__3 = j - ki - 1;			work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + j * t_dim1], 				&c__1, &work[ki + 1 + *n], &c__1);/*                    Solve (T(J,J)-WR)'*X = WORK */			_starpu_dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, 				&ierr);/*                    Scale if necessary */			if (scale != 1.) {			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);			}			work[j + *n] = x[0];/* Computing MAX */			d__2 = (d__1 = work[j + *n], abs(d__1));			vmax = max(d__2,vmax);			vcrit = bignum / vmax;		    } else {/*                    2-by-2 diagonal block *//*                    Scale if necessary to avoid overflow when forming *//*                    the right-hand side. *//* Computing MAX */			d__1 = work[j], d__2 = work[j + 1];			beta = max(d__1,d__2);			if (beta > vcrit) {			    rec = 1. / vmax;			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);			    vmax = 1.;			    vcrit = bignum;			}			i__3 = j - ki - 1;			work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + j * t_dim1], 				&c__1, &work[ki + 1 + *n], &c__1);			i__3 = j - ki - 1;			work[j + 1 + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + (j + 1) *				 t_dim1], &c__1, &work[ki + 1 + *n], &c__1);/*                    Solve *//*                      [T(J,J)-WR   T(J,J+1)     ]'* X = SCALE*( WORK1 ) *//*                      [T(J+1,J)    T(J+1,J+1)-WR]             ( WORK2 ) */			_starpu_dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, 				&ierr);/*                    Scale if necessary */			if (scale != 1.) {			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);			}			work[j + *n] = x[0];			work[j + 1 + *n] = x[1];/* Computing MAX */			d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2 				= work[j + 1 + *n], abs(d__2)), d__3 = max(				d__3,d__4);			vmax = max(d__3,vmax);			vcrit = bignum / vmax;		    }L170:		    ;		}/*              Copy the vector x or Q*x to VL and normalize. */		if (! over) {		    i__2 = *n - ki + 1;		    _starpu_dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * 			    vl_dim1], &c__1);		    i__2 = *n - ki + 1;		    ii = _starpu_idamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 			    1;		    remax = 1. / (d__1 = vl[ii + is * vl_dim1], abs(d__1));		    i__2 = *n - ki + 1;		    _starpu_dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);		    i__2 = ki - 1;		    for (k = 1; k <= i__2; ++k) {			vl[k + is * vl_dim1] = 0.;/* L180: */		    }		} else {		    if (ki < *n) {			i__2 = *n - ki;			_starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 1) * vl_dim1 				+ 1], ldvl, &work[ki + 1 + *n], &c__1, &work[				ki + *n], &vl[ki * vl_dim1 + 1], &c__1);		    }		    ii = _starpu_idamax_(n, &vl[ki * vl_dim1 + 1], &c__1);		    remax = 1. / (d__1 = vl[ii + ki * vl_dim1], abs(d__1));		    _starpu_dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);		}	    } else {/*              Complex left eigenvector. *//*               Initial solve: *//*                 ((T(KI,KI)    T(KI,KI+1) )' - (WR - I* WI))*X = 0. *//*                 ((T(KI+1,KI) T(KI+1,KI+1))                ) */		if ((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1)) >= (d__2 = 			t[ki + 1 + ki * t_dim1], abs(d__2))) {		    work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1];		    work[ki + 1 + n2] = 1.;		} else {		    work[ki + *n] = 1.;		    work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1];		}		work[ki + 1 + *n] = 0.;		work[ki + n2] = 0.;/*              Form right-hand side */		i__2 = *n;		for (k = ki + 2; k <= i__2; ++k) {		    work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1];		    work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1]			    ;/* L190: */		}/*              Solve complex quasi-triangular system: *//*              ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2 */		vmax = 1.;		vcrit = bignum;		jnxt = ki + 2;		i__2 = *n;		for (j = ki + 2; j <= i__2; ++j) {		    if (j < jnxt) {			goto L200;		    }		    j1 = j;		    j2 = j;		    jnxt = j + 1;		    if (j < *n) {			if (t[j + 1 + j * t_dim1] != 0.) {			    j2 = j + 1;			    jnxt = j + 2;			}		    }		    if (j1 == j2) {/*                    1-by-1 diagonal block *//*                    Scale if necessary to avoid overflow when *//*                    forming the right-hand side elements. */			if (work[j] > vcrit) {			    rec = 1. / vmax;			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + n2], &c__1);			    vmax = 1.;			    vcrit = bignum;			}			i__3 = j - ki - 2;			work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1], 				&c__1, &work[ki + 2 + *n], &c__1);			i__3 = j - ki - 2;			work[j + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1], 				&c__1, &work[ki + 2 + n2], &c__1);/*                    Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */			d__1 = -wi;			_starpu_dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &				ierr);/*                    Scale if necessary */			if (scale != 1.) {			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + n2], &c__1);			}			work[j + *n] = x[0];			work[j + n2] = x[2];/* Computing MAX */			d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2 				= work[j + n2], abs(d__2)), d__3 = max(d__3,				d__4);			vmax = max(d__3,vmax);			vcrit = bignum / vmax;		    } else {/*                    2-by-2 diagonal block *//*                    Scale if necessary to avoid overflow when forming *//*                    the right-hand side elements. *//* Computing MAX */			d__1 = work[j], d__2 = work[j + 1];			beta = max(d__1,d__2);			if (beta > vcrit) {			    rec = 1. / vmax;			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &rec, &work[ki + n2], &c__1);			    vmax = 1.;			    vcrit = bignum;			}			i__3 = j - ki - 2;			work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1], 				&c__1, &work[ki + 2 + *n], &c__1);			i__3 = j - ki - 2;			work[j + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1], 				&c__1, &work[ki + 2 + n2], &c__1);			i__3 = j - ki - 2;			work[j + 1 + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + (j + 1) *				 t_dim1], &c__1, &work[ki + 2 + *n], &c__1);			i__3 = j - ki - 2;			work[j + 1 + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + (j + 1) *				 t_dim1], &c__1, &work[ki + 2 + n2], &c__1);/*                    Solve 2-by-2 complex linear equation *//*                      ([T(j,j)   T(j,j+1)  ]'-(wr-i*wi)*I)*X = SCALE*B *//*                      ([T(j+1,j) T(j+1,j+1)]             ) */			d__1 = -wi;			_starpu_dlaln2_(&c_true, &c__2, &c__2, &smin, &c_b22, &t[j + 				j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *				n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &				ierr);/*                    Scale if necessary */			if (scale != 1.) {			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);			    i__3 = *n - ki + 1;			    _starpu_dscal_(&i__3, &scale, &work[ki + n2], &c__1);			}			work[j + *n] = x[0];			work[j + n2] = x[2];			work[j + 1 + *n] = x[1];			work[j + 1 + n2] = x[3];/* Computing MAX */			d__1 = abs(x[0]), d__2 = abs(x[2]), d__1 = max(d__1,				d__2), d__2 = abs(x[1]), d__1 = max(d__1,d__2)				, d__2 = abs(x[3]), d__1 = max(d__1,d__2);			vmax = max(d__1,vmax);			vcrit = bignum / vmax;		    }L200:		    ;		}/*              Copy the vector x or Q*x to VL and normalize. */		if (! over) {		    i__2 = *n - ki + 1;		    _starpu_dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * 			    vl_dim1], &c__1);		    i__2 = *n - ki + 1;		    _starpu_dcopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) * 			    vl_dim1], &c__1);		    emax = 0.;		    i__2 = *n;		    for (k = ki; k <= i__2; ++k) {/* Computing MAX */			d__3 = emax, d__4 = (d__1 = vl[k + is * vl_dim1], abs(				d__1)) + (d__2 = vl[k + (is + 1) * vl_dim1], 				abs(d__2));			emax = max(d__3,d__4);/* L220: */		    }		    remax = 1. / emax;		    i__2 = *n - ki + 1;		    _starpu_dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);		    i__2 = *n - ki + 1;		    _starpu_dscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)			    ;		    i__2 = ki - 1;		    for (k = 1; k <= i__2; ++k) {			vl[k + is * vl_dim1] = 0.;			vl[k + (is + 1) * vl_dim1] = 0.;/* L230: */		    }		} else {		    if (ki < *n - 1) {			i__2 = *n - ki - 1;			_starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 				+ 1], ldvl, &work[ki + 2 + *n], &c__1, &work[				ki + *n], &vl[ki * vl_dim1 + 1], &c__1);			i__2 = *n - ki - 1;			_starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 				+ 1], ldvl, &work[ki + 2 + n2], &c__1, &work[				ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &				c__1);		    } else {			_starpu_dscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], &				c__1);			_starpu_dscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1 				+ 1], &c__1);		    }		    emax = 0.;		    i__2 = *n;		    for (k = 1; k <= i__2; ++k) {/* Computing MAX */			d__3 = emax, d__4 = (d__1 = vl[k + ki * vl_dim1], abs(				d__1)) + (d__2 = vl[k + (ki + 1) * vl_dim1], 				abs(d__2));			emax = max(d__3,d__4);/* L240: */		    }		    remax = 1. / emax;		    _starpu_dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);		    _starpu_dscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);		}	    }	    ++is;	    if (ip != 0) {		++is;	    }L250:	    if (ip == -1) {		ip = 0;	    }	    if (ip == 1) {		ip = -1;	    }/* L260: */	}    }    return 0;/*     End of DTREVC */} /* _starpu_dtrevc_ */
 |