| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 | /* dggrqf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dggrqf_(integer *m, integer *p, integer *n, doublereal *	a, integer *lda, doublereal *taua, doublereal *b, integer *ldb, 	doublereal *taub, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    integer nb, nb1, nb2, nb3, lopt;    extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dgerqf_(integer *, integer *, doublereal *, integer *, doublereal 	    *, doublereal *, integer *, integer *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dormrq_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGRQF computes a generalized RQ factorization of an M-by-N matrix A *//*  and a P-by-N matrix B: *//*              A = R*Q,        B = Z*T*Q, *//*  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal *//*  matrix, and R and T assume one of the forms: *//*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N, *//*                   N-M  M                           ( R21 ) N *//*                                                       N *//*  where R12 or R21 is upper triangular, and *//*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P, *//*                  (  0  ) P-N                         P   N-P *//*                     N *//*  where T11 is upper triangular. *//*  In particular, if B is square and nonsingular, the GRQ factorization *//*  of A and B implicitly gives the RQ factorization of A*inv(B): *//*               A*inv(B) = (R*inv(T))*Z' *//*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the *//*  transpose of the matrix Z. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  P       (input) INTEGER *//*          The number of rows of the matrix B.  P >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrices A and B. N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, if M <= N, the upper triangle of the subarray *//*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; *//*          if M > N, the elements on and above the (M-N)-th subdiagonal *//*          contain the M-by-N upper trapezoidal matrix R; the remaining *//*          elements, with the array TAUA, represent the orthogonal *//*          matrix Q as a product of elementary reflectors (see Further *//*          Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  TAUA    (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix Q (see Further Details). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) *//*          On entry, the P-by-N matrix B. *//*          On exit, the elements on and above the diagonal of the array *//*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is *//*          upper triangular if P >= N); the elements below the diagonal, *//*          with the array TAUB, represent the orthogonal matrix Z as a *//*          product of elementary reflectors (see Further Details). *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,P). *//*  TAUB    (output) DOUBLE PRECISION array, dimension (min(P,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix Z (see Further Details). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,N,M,P). *//*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), *//*          where NB1 is the optimal blocksize for the RQ factorization *//*          of an M-by-N matrix, NB2 is the optimal blocksize for the *//*          QR factorization of a P-by-N matrix, and NB3 is the optimal *//*          blocksize for a call of DORMRQ. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INF0= -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(k), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - taua * v * v' *//*  where taua is a real scalar, and v is a real vector with *//*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in *//*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i). *//*  To form Q explicitly, use LAPACK subroutine DORGRQ. *//*  To use Q to update another matrix, use LAPACK subroutine DORMRQ. *//*  The matrix Z is represented as a product of elementary reflectors *//*     Z = H(1) H(2) . . . H(k), where k = min(p,n). *//*  Each H(i) has the form *//*     H(i) = I - taub * v * v' *//*  where taub is a real scalar, and v is a real vector with *//*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), *//*  and taub in TAUB(i). *//*  To form Z explicitly, use LAPACK subroutine DORGQR. *//*  To use Z to update another matrix, use LAPACK subroutine DORMQR. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --taua;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --taub;    --work;    /* Function Body */    *info = 0;    nb1 = _starpu_ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1);    nb2 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", p, n, &c_n1, &c_n1);    nb3 = _starpu_ilaenv_(&c__1, "DORMRQ", " ", m, n, p, &c_n1);/* Computing MAX */    i__1 = max(nb1,nb2);    nb = max(i__1,nb3);/* Computing MAX */    i__1 = max(*n,*m);    lwkopt = max(i__1,*p) * nb;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*p < 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    } else if (*ldb < max(1,*p)) {	*info = -8;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = max(1,*m), i__1 = max(i__1,*p);	if (*lwork < max(i__1,*n) && ! lquery) {	    *info = -11;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGGRQF", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     RQ factorization of M-by-N matrix A: A = R*Q */    _starpu_dgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);    lopt = (integer) work[1];/*     Update B := B*Q' */    i__1 = min(*m,*n);/* Computing MAX */    i__2 = 1, i__3 = *m - *n + 1;    _starpu_dormrq_("Right", "Transpose", p, n, &i__1, &a[max(i__2, i__3)+ a_dim1], 	    lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[1];    lopt = max(i__1,i__2);/*     QR factorization of P-by-N matrix B: B = Z*T */    _starpu_dgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[1];    work[1] = (doublereal) max(i__1,i__2);    return 0;/*     End of DGGRQF */} /* _starpu_dggrqf_ */
 |