basic_examples.doxy 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page BasicExamples Basic Examples
  9. \section HelloWorldUsingTheCExtension Hello World Using The C Extension
  10. This section shows how to implement a simple program that submits a task
  11. to StarPU using the StarPU C extension (\ref cExtensions). The complete example, and additional examples,
  12. is available in the directory <c>gcc-plugin/examples</c> of the StarPU
  13. distribution. A similar example showing how to directly use the StarPU's API is shown
  14. in \ref HelloWorldUsingStarPUAPI.
  15. GCC from version 4.5 permit to use the StarPU GCC plug-in (\ref cExtensions). This makes writing a task both simpler and less error-prone.
  16. In a nutshell, all it takes is to declare a task, declare and define its
  17. implementations (for CPU, OpenCL, and/or CUDA), and invoke the task like
  18. a regular C function. The example below defines <c>my_task</c> which
  19. has a single implementation for CPU:
  20. \snippet hello_pragma.c To be included
  21. The code can then be compiled and linked with GCC and the flag <c>-fplugin</c>:
  22. \verbatim
  23. $ gcc `pkg-config starpu-1.2 --cflags` hello-starpu.c \
  24. -fplugin=`pkg-config starpu-1.2 --variable=gccplugin` \
  25. `pkg-config starpu-1.2 --libs`
  26. \endverbatim
  27. The code can also be compiled without the StarPU C extension and will
  28. behave as a normal sequential code.
  29. \verbatim
  30. $ gcc hello-starpu.c
  31. hello-starpu.c:33:1: warning: ‘task’ attribute directive ignored [-Wattributes]
  32. $ ./a.out
  33. Hello, world! With x = 42
  34. \endverbatim
  35. As can be seen above, the C extensions allows programmers to
  36. use StarPU tasks by essentially annotating ``regular'' C code.
  37. \section HelloWorldUsingStarPUAPI Hello World Using StarPU's API
  38. This section shows how to achieve the same result as in the previous
  39. section using StarPU's standard C API.
  40. \subsection RequiredHeaders Required Headers
  41. The header starpu.h should be included in any code using StarPU.
  42. \code{.c}
  43. #include <starpu.h>
  44. \endcode
  45. \subsection DefiningACodelet Defining A Codelet
  46. \code{.c}
  47. struct params
  48. {
  49. int i;
  50. float f;
  51. };
  52. void cpu_func(void *buffers[], void *cl_arg)
  53. {
  54. struct params *params = cl_arg;
  55. printf("Hello world (params = {%i, %f} )\n", params->i, params->f);
  56. }
  57. struct starpu_codelet cl =
  58. {
  59. .where = STARPU_CPU,
  60. .cpu_funcs = { cpu_func, NULL },
  61. .cpu_funcs_name = { "cpu_func", NULL },
  62. .nbuffers = 0
  63. };
  64. \endcode
  65. A codelet is a structure that represents a computational kernel. Such a codelet
  66. may contain an implementation of the same kernel on different architectures
  67. (e.g. CUDA, x86, ...). For compatibility, make sure that the whole
  68. structure is properly initialized to zero, either by using the
  69. function starpu_codelet_init(), or by letting the
  70. compiler implicitly do it as examplified above.
  71. The field starpu_codelet::nbuffers specifies the number of data buffers that are
  72. manipulated by the codelet: here the codelet does not access or modify any data
  73. that is controlled by our data management library. Note that the argument
  74. passed to the codelet (the parameter <c>cl_arg</c> of the function
  75. <c>cpu_func</c>) does not count as a buffer since it is not managed by
  76. our data management library, but just contain trivial parameters.
  77. \internal
  78. TODO need a crossref to the proper description of "where" see bla for more ...
  79. \endinternal
  80. We create a codelet which may only be executed on the CPUs. The field
  81. starpu_codelet::where is a bitmask that defines where the codelet may
  82. be executed. Here, the value ::STARPU_CPU means that only CPUs can
  83. execute this codelet. Note that field starpu_codelet::where is
  84. optional, when unset its value is automatically set based on the
  85. availability of the different fields <c>XXX_funcs</c>.
  86. When a CPU core executes a codelet, it calls the function
  87. <c>cpu_func</c>, which \em must have the following prototype:
  88. \code{.c}
  89. void (*cpu_func)(void *buffers[], void *cl_arg);
  90. \endcode
  91. In this example, we can ignore the first argument of this function which gives a
  92. description of the input and output buffers (e.g. the size and the location of
  93. the matrices) since there is none.
  94. The second argument is a pointer to a buffer passed as an
  95. argument to the codelet by the means of the field starpu_task::cl_arg.
  96. \internal
  97. TODO rewrite so that it is a little clearer ?
  98. \endinternal
  99. Be aware that this may be a pointer to a
  100. \em copy of the actual buffer, and not the pointer given by the programmer:
  101. if the codelet modifies this buffer, there is no guarantee that the initial
  102. buffer will be modified as well: this for instance implies that the buffer
  103. cannot be used as a synchronization medium. If synchronization is needed, data
  104. has to be registered to StarPU, see \ref VectorScalingUsingStarPUAPI.
  105. \subsection SubmittingATask Submitting A Task
  106. \code{.c}
  107. void callback_func(void *callback_arg)
  108. {
  109. printf("Callback function (arg %x)\n", callback_arg);
  110. }
  111. int main(int argc, char **argv)
  112. {
  113. /* initialize StarPU */
  114. starpu_init(NULL);
  115. struct starpu_task *task = starpu_task_create();
  116. task->cl = &cl; /* Pointer to the codelet defined above */
  117. struct params params = { 1, 2.0f };
  118. task->cl_arg = &params;
  119. task->cl_arg_size = sizeof(params);
  120. task->callback_func = callback_func;
  121. task->callback_arg = 0x42;
  122. /* starpu_task_submit will be a blocking call */
  123. task->synchronous = 1;
  124. /* submit the task to StarPU */
  125. starpu_task_submit(task);
  126. /* terminate StarPU */
  127. starpu_shutdown();
  128. return 0;
  129. }
  130. \endcode
  131. Before submitting any tasks to StarPU, starpu_init() must be called. The
  132. <c>NULL</c> argument specifies that we use the default configuration. Tasks cannot
  133. be submitted after the termination of StarPU by a call to
  134. starpu_shutdown().
  135. In the example above, a task structure is allocated by a call to
  136. starpu_task_create(). This function only allocates and fills the
  137. corresponding structure with the default settings, but it does not
  138. submit the task to StarPU.
  139. \internal
  140. not really clear ;)
  141. \endinternal
  142. The field starpu_task::cl is a pointer to the codelet which the task will
  143. execute: in other words, the codelet structure describes which computational
  144. kernel should be offloaded on the different architectures, and the task
  145. structure is a wrapper containing a codelet and the piece of data on which the
  146. codelet should operate.
  147. The optional field starpu_task::cl_arg field is a pointer to a buffer
  148. (of size starpu_task::cl_arg_size) with some parameters for the kernel
  149. described by the codelet. For instance, if a codelet implements a
  150. computational kernel that multiplies its input vector by a constant,
  151. the constant could be specified by the means of this buffer, instead
  152. of registering it as a StarPU data. It must however be noted that
  153. StarPU avoids making copy whenever possible and rather passes the
  154. pointer as such, so the buffer which is pointed at must be kept allocated
  155. until the task terminates, and if several tasks are submitted with
  156. various parameters, each of them must be given a pointer to their
  157. own buffer.
  158. Once a task has been executed, an optional callback function
  159. starpu_task::callback_func is called when defined.
  160. While the computational kernel could be offloaded on various architectures, the
  161. callback function is always executed on a CPU. The pointer
  162. starpu_task::callback_arg is passed as an argument of the callback
  163. function. The prototype of a callback function must be:
  164. \code{.c}
  165. void (*callback_function)(void *);
  166. \endcode
  167. If the field starpu_task::synchronous is non-zero, task submission
  168. will be synchronous: the function starpu_task_submit() will not return
  169. until the task has been executed. Note that the function starpu_shutdown()
  170. does not guarantee that asynchronous tasks have been executed before
  171. it returns, starpu_task_wait_for_all() can be used to that effect, or
  172. data can be unregistered (starpu_data_unregister()), which will
  173. implicitly wait for all the tasks scheduled to work on it, unless
  174. explicitly disabled thanks to
  175. starpu_data_set_default_sequential_consistency_flag() or
  176. starpu_data_set_sequential_consistency_flag().
  177. \subsection ExecutionOfHelloWorld Execution Of Hello World
  178. \verbatim
  179. $ make hello_world
  180. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) hello_world.c -o hello_world
  181. $ ./hello_world
  182. Hello world (params = {1, 2.000000} )
  183. Callback function (arg 42)
  184. \endverbatim
  185. \section VectorScalingUsingTheCExtension Vector Scaling Using the C Extension
  186. The previous example has shown how to submit tasks. In this section,
  187. we show how StarPU tasks can manipulate data.
  188. We will first show how to use the C language extensions provided by
  189. the GCC plug-in (\ref cExtensions). The complete example, and
  190. additional examples, is available in the directory <c>gcc-plugin/examples</c>
  191. of the StarPU distribution. These extensions map directly
  192. to StarPU's main concepts: tasks, task implementations for CPU,
  193. OpenCL, or CUDA, and registered data buffers. The standard C version
  194. that uses StarPU's standard C programming interface is given in \ref
  195. VectorScalingUsingStarPUAPI.
  196. First of all, the vector-scaling task and its simple CPU implementation
  197. has to be defined:
  198. \code{.c}
  199. /* Declare the `vector_scal' task. */
  200. static void vector_scal (unsigned size, float vector[size],
  201. float factor)
  202. __attribute__ ((task));
  203. /* Define the standard CPU implementation. */
  204. static void
  205. vector_scal (unsigned size, float vector[size], float factor)
  206. {
  207. unsigned i;
  208. for (i = 0; i < size; i++)
  209. vector[i] *= factor;
  210. }
  211. \endcode
  212. Next, the body of the program, which uses the task defined above, can be
  213. implemented:
  214. \snippet hello_pragma2.c To be included
  215. The function <c>main</c> above does several things:
  216. <ul>
  217. <li>
  218. It initializes StarPU.
  219. </li>
  220. <li>
  221. It allocates <c>vector</c> in the heap; it will automatically be freed
  222. when its scope is left. Alternatively, good old <c>malloc</c> and
  223. <c>free</c> could have been used, but they are more error-prone and
  224. require more typing.
  225. </li>
  226. <li>
  227. It registers the memory pointed to by <c>vector</c>. Eventually,
  228. when OpenCL or CUDA task implementations are added, this will allow
  229. StarPU to transfer that memory region between GPUs and the main memory.
  230. Removing this <c>pragma</c> is an error.
  231. </li>
  232. <li>
  233. It invokes the task <c>vector_scal</c>. The invocation looks the same
  234. as a standard C function call. However, it is an asynchronous
  235. invocation, meaning that the actual call is performed in parallel with
  236. the caller's continuation.
  237. </li>
  238. <li>
  239. It waits for the termination of the asynchronous call <c>vector_scal</c>.
  240. </li>
  241. <li>
  242. Finally, StarPU is shut down.
  243. </li>
  244. </ul>
  245. The program can be compiled and linked with GCC and the flag <c>-fplugin</c>:
  246. \verbatim
  247. $ gcc `pkg-config starpu-1.2 --cflags` vector_scal.c \
  248. -fplugin=`pkg-config starpu-1.2 --variable=gccplugin` \
  249. `pkg-config starpu-1.2 --libs`
  250. \endverbatim
  251. And voilà!
  252. \subsection AddingAnOpenCLTaskImplementation Adding an OpenCL Task Implementation
  253. Now, this is all fine and great, but you certainly want to take
  254. advantage of these newfangled GPUs that your lab just bought, don't you?
  255. So, let's add an OpenCL implementation of the task <c>vector_scal</c>.
  256. We assume that the OpenCL kernel is available in a file,
  257. <c>vector_scal_opencl_kernel.cl</c>, not shown here. The OpenCL task
  258. implementation is similar to that used with the standard C API
  259. (\ref DefinitionOfTheOpenCLKernel). It is declared and defined
  260. in our C file like this:
  261. \code{.c}
  262. /* The OpenCL programs, loaded from 'main' (see below). */
  263. static struct starpu_opencl_program cl_programs;
  264. static void vector_scal_opencl (unsigned size, float vector[size],
  265. float factor)
  266. __attribute__ ((task_implementation ("opencl", vector_scal)));
  267. static void
  268. vector_scal_opencl (unsigned size, float vector[size], float factor)
  269. {
  270. int id, devid, err;
  271. cl_kernel kernel;
  272. cl_command_queue queue;
  273. cl_event event;
  274. /* VECTOR is GPU memory pointer, not a main memory pointer. */
  275. cl_mem val = (cl_mem) vector;
  276. id = starpu_worker_get_id ();
  277. devid = starpu_worker_get_devid (id);
  278. /* Prepare to invoke the kernel. In the future, this will be largely automated. */
  279. err = starpu_opencl_load_kernel (&kernel, &queue, &cl_programs,
  280. "vector_mult_opencl", devid);
  281. if (err != CL_SUCCESS)
  282. STARPU_OPENCL_REPORT_ERROR (err);
  283. err = clSetKernelArg (kernel, 0, sizeof (size), &size);
  284. err |= clSetKernelArg (kernel, 1, sizeof (val), &val);
  285. err |= clSetKernelArg (kernel, 2, sizeof (factor), &factor);
  286. if (err)
  287. STARPU_OPENCL_REPORT_ERROR (err);
  288. size_t global = 1, local = 1;
  289. err = clEnqueueNDRangeKernel (queue, kernel, 1, NULL, &global,
  290. &local, 0, NULL, &event);
  291. if (err != CL_SUCCESS)
  292. STARPU_OPENCL_REPORT_ERROR (err);
  293. clFinish (queue);
  294. starpu_opencl_collect_stats (event);
  295. clReleaseEvent (event);
  296. /* Done with KERNEL. */
  297. starpu_opencl_release_kernel (kernel);
  298. }
  299. \endcode
  300. The OpenCL kernel itself must be loaded from <c>main</c>, sometime after
  301. the pragma <c>initialize</c>:
  302. \code{.c}
  303. starpu_opencl_load_opencl_from_file ("vector_scal_opencl_kernel.cl",
  304. &cl_programs, "");
  305. \endcode
  306. And that's it. The task <c>vector_scal</c> now has an additional
  307. implementation, for OpenCL, which StarPU's scheduler may choose to use
  308. at run-time. Unfortunately, the <c>vector_scal_opencl</c> above still
  309. has to go through the common OpenCL boilerplate; in the future,
  310. additional extensions will automate most of it.
  311. \subsection AddingACUDATaskImplementation Adding a CUDA Task Implementation
  312. Adding a CUDA implementation of the task is very similar, except that
  313. the implementation itself is typically written in CUDA, and compiled
  314. with <c>nvcc</c>. Thus, the C file only needs to contain an external
  315. declaration for the task implementation:
  316. \code{.c}
  317. extern void vector_scal_cuda (unsigned size, float vector[size],
  318. float factor)
  319. __attribute__ ((task_implementation ("cuda", vector_scal)));
  320. \endcode
  321. The actual implementation of the CUDA task goes into a separate
  322. compilation unit, in a <c>.cu</c> file. It is very close to the
  323. implementation when using StarPU's standard C API (\ref DefinitionOfTheCUDAKernel).
  324. \snippet scal_pragma.cu To be included
  325. The complete source code, in the directory <c>gcc-plugin/examples/vector_scal</c>
  326. of the StarPU distribution, also shows how an SSE-specialized
  327. CPU task implementation can be added.
  328. For more details on the C extensions provided by StarPU's GCC plug-in, see
  329. \ref cExtensions.
  330. \section VectorScalingUsingStarPUAPI Vector Scaling Using StarPU's API
  331. This section shows how to achieve the same result as explained in the
  332. previous section using StarPU's standard C API.
  333. The full source code for
  334. this example is given in \ref FullSourceCodeVectorScal.
  335. \subsection SourceCodeOfVectorScaling Source Code of Vector Scaling
  336. Programmers can describe the data layout of their application so that StarPU is
  337. responsible for enforcing data coherency and availability across the machine.
  338. Instead of handling complex (and non-portable) mechanisms to perform data
  339. movements, programmers only declare which piece of data is accessed and/or
  340. modified by a task, and StarPU makes sure that when a computational kernel
  341. starts somewhere (e.g. on a GPU), its data are available locally.
  342. Before submitting those tasks, the programmer first needs to declare the
  343. different pieces of data to StarPU using the functions
  344. <c>starpu_*_data_register</c>. To ease the development of applications
  345. for StarPU, it is possible to describe multiple types of data layout.
  346. A type of data layout is called an <b>interface</b>. There are
  347. different predefined interfaces available in StarPU: here we will
  348. consider the <b>vector interface</b>.
  349. The following lines show how to declare an array of <c>NX</c> elements of type
  350. <c>float</c> using the vector interface:
  351. \code{.c}
  352. float vector[NX];
  353. starpu_data_handle_t vector_handle;
  354. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  355. sizeof(vector[0]));
  356. \endcode
  357. The first argument, called the <b>data handle</b>, is an opaque pointer which
  358. designates the array in StarPU. This is also the structure which is used to
  359. describe which data is used by a task. The second argument is the node number
  360. where the data originally resides. Here it is 0 since the array <c>vector</c> is in
  361. the main memory. Then comes the pointer <c>vector</c> where the data can be found in main memory,
  362. the number of elements in the vector and the size of each element.
  363. The following shows how to construct a StarPU task that will manipulate the
  364. vector and a constant factor.
  365. \code{.c}
  366. float factor = 3.14;
  367. struct starpu_task *task = starpu_task_create();
  368. task->cl = &cl; /* Pointer to the codelet defined below */
  369. task->handles[0] = vector_handle; /* First parameter of the codelet */
  370. task->cl_arg = &factor;
  371. task->cl_arg_size = sizeof(factor);
  372. task->synchronous = 1;
  373. starpu_task_submit(task);
  374. \endcode
  375. Since the factor is a mere constant float value parameter,
  376. it does not need a preliminary registration, and
  377. can just be passed through the pointer starpu_task::cl_arg like in the previous
  378. example. The vector parameter is described by its handle.
  379. starpu_task::handles should be set with the handles of the data, the
  380. access modes for the data are defined in the field
  381. starpu_codelet::modes (::STARPU_R for read-only, ::STARPU_W for
  382. write-only and ::STARPU_RW for read and write access).
  383. The definition of the codelet can be written as follows:
  384. \code{.c}
  385. void scal_cpu_func(void *buffers[], void *cl_arg)
  386. {
  387. unsigned i;
  388. float *factor = cl_arg;
  389. /* length of the vector */
  390. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  391. /* CPU copy of the vector pointer */
  392. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  393. for (i = 0; i < n; i++)
  394. val[i] *= *factor;
  395. }
  396. struct starpu_codelet cl =
  397. {
  398. .cpu_funcs = { scal_cpu_func, NULL },
  399. .cpu_funcs_name = { "scal_cpu_func", NULL },
  400. .nbuffers = 1,
  401. .modes = { STARPU_RW }
  402. };
  403. \endcode
  404. The first argument is an array that gives
  405. a description of all the buffers passed in the array starpu_task::handles. The
  406. size of this array is given by the field starpu_codelet::nbuffers. For
  407. the sake of genericity, this array contains pointers to the different
  408. interfaces describing each buffer. In the case of the <b>vector
  409. interface</b>, the location of the vector (resp. its length) is
  410. accessible in the starpu_vector_interface::ptr (resp.
  411. starpu_vector_interface::nx) of this interface. Since the vector is
  412. accessed in a read-write fashion, any modification will automatically
  413. affect future accesses to this vector made by other tasks.
  414. The second argument of the function <c>scal_cpu_func</c> contains a
  415. pointer to the parameters of the codelet (given in
  416. starpu_task::cl_arg), so that we read the constant factor from this
  417. pointer.
  418. \subsection ExecutionOfVectorScaling Execution of Vector Scaling
  419. \verbatim
  420. $ make vector_scal
  421. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) vector_scal.c -o vector_scal
  422. $ ./vector_scal
  423. 0.000000 3.000000 6.000000 9.000000 12.000000
  424. \endverbatim
  425. \section VectorScalingOnAnHybridCPUGPUMachine Vector Scaling on an Hybrid CPU/GPU Machine
  426. Contrary to the previous examples, the task submitted in this example may not
  427. only be executed by the CPUs, but also by a CUDA device.
  428. \subsection DefinitionOfTheCUDAKernel Definition of the CUDA Kernel
  429. The CUDA implementation can be written as follows. It needs to be compiled with
  430. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  431. that the vector pointer returned by ::STARPU_VECTOR_GET_PTR is here a
  432. pointer in GPU memory, so that it can be passed as such to the
  433. kernel call <c>vector_mult_cuda</c>.
  434. \snippet vector_scal_cuda.cu To be included
  435. \subsection DefinitionOfTheOpenCLKernel Definition of the OpenCL Kernel
  436. The OpenCL implementation can be written as follows. StarPU provides
  437. tools to compile a OpenCL kernel stored in a file.
  438. \code{.c}
  439. __kernel void vector_mult_opencl(int nx, __global float* val, float factor)
  440. {
  441. const int i = get_global_id(0);
  442. if (i < nx) {
  443. val[i] *= factor;
  444. }
  445. }
  446. \endcode
  447. Contrary to CUDA and CPU, ::STARPU_VECTOR_GET_DEV_HANDLE has to be used,
  448. which returns a <c>cl_mem</c> (which is not a device pointer, but an OpenCL
  449. handle), which can be passed as such to the OpenCL kernel. The difference is
  450. important when using partitioning, see \ref PartitioningData.
  451. \snippet vector_scal_opencl.c To be included
  452. \subsection DefinitionOfTheMainCode Definition of the Main Code
  453. The CPU implementation is the same as in the previous section.
  454. Here is the source of the main application. You can notice that the fields
  455. starpu_codelet::cuda_funcs and starpu_codelet::opencl_funcs are set to
  456. define the pointers to the CUDA and OpenCL implementations of the
  457. task.
  458. \snippet vector_scal_c.c To be included
  459. \subsection ExecutionOfHybridVectorScaling Execution of Hybrid Vector Scaling
  460. The Makefile given at the beginning of the section must be extended to
  461. give the rules to compile the CUDA source code. Note that the source
  462. file of the OpenCL kernel does not need to be compiled now, it will
  463. be compiled at run-time when calling the function
  464. starpu_opencl_load_opencl_from_file().
  465. \verbatim
  466. CFLAGS += $(shell pkg-config --cflags starpu-1.2)
  467. LDFLAGS += $(shell pkg-config --libs starpu-1.2)
  468. CC = gcc
  469. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  470. %.o: %.cu
  471. nvcc $(CFLAGS) $< -c $@
  472. clean:
  473. rm -f vector_scal *.o
  474. \endverbatim
  475. \verbatim
  476. $ make
  477. \endverbatim
  478. and to execute it, with the default configuration:
  479. \verbatim
  480. $ ./vector_scal
  481. 0.000000 3.000000 6.000000 9.000000 12.000000
  482. \endverbatim
  483. or for example, by disabling CPU devices:
  484. \verbatim
  485. $ STARPU_NCPU=0 ./vector_scal
  486. 0.000000 3.000000 6.000000 9.000000 12.000000
  487. \endverbatim
  488. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  489. see \ref EnablingOpenCL) :
  490. \verbatim
  491. $ STARPU_NCUDA=0 ./vector_scal
  492. 0.000000 3.000000 6.000000 9.000000 12.000000
  493. \endverbatim
  494. */