basic-api.texi 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number of
  37. processing units and takes the default scheduling policy. The environment
  38. variables overwrite the equivalent parameters.
  39. @table @asis
  40. @item @code{const char *sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{int ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{int ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{int nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{int nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where the
  60. different workers are bound, otherwise StarPU automatically selects where to
  61. bind the different workers. This can also be specified with the
  62. @code{STARPU_WORKERS_CPUID} environment variable.
  63. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  64. If the @code{use_explicit_workers_bindid} flag is set, this array
  65. indicates where to bind the different workers. The i-th entry of the
  66. @code{workers_bindid} indicates the logical identifier of the
  67. processor which should execute the i-th worker. Note that the logical
  68. ordering of the CPUs is either determined by the OS, or provided by
  69. the @code{hwloc} library in case it is available.
  70. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  71. If this flag is set, the CUDA workers will be attached to the CUDA devices
  72. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  73. CUDA devices in a round-robin fashion. This can also be specified with the
  74. @code{STARPU_WORKERS_CUDAID} environment variable.
  75. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  76. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  77. contains the logical identifiers of the CUDA devices (as used by
  78. @code{cudaGetDevice}).
  79. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  80. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  81. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  82. the OpenCL devices in a round-robin fashion. This can also be specified with
  83. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  84. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  86. contains the logical identifiers of the OpenCL devices to be used.
  87. @item @code{int calibrate} (default = 0)
  88. If this flag is set, StarPU will calibrate the performance models when
  89. executing tasks. If this value is equal to -1, the default value is used. This
  90. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  91. @item @code{int single_combined_worker} (default = 0)
  92. By default, StarPU creates various combined workers according to the machine
  93. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  94. not support concurrent calls to parallel code. In such case, setting this flag
  95. makes StarPU only create one combined worker, containing all
  96. the CPU workers. This can also be specified by the
  97. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  98. @end table
  99. @end deftp
  100. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  101. This function initializes the @var{conf} structure passed as argument
  102. with the default values. In case some configuration parameters are already
  103. specified through environment variables, @code{starpu_conf_init} initializes
  104. the fields of the structure according to the environment variables. For
  105. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  106. @code{.ncuda} field of the structure passed as argument.
  107. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  108. indicates that the argument was NULL.
  109. @end deftypefun
  110. @deftypefun void starpu_shutdown (void)
  111. This is StarPU termination method. It must be called at the end of the
  112. application: statistics and other post-mortem debugging information are not
  113. guaranteed to be available until this method has been called.
  114. @end deftypefun
  115. @node Workers' Properties
  116. @section Workers' Properties
  117. @deftp {Data Type} {enum starpu_archtype}
  118. The different values are:
  119. @table @asis
  120. @item @code{STARPU_CPU_WORKER}
  121. @item @code{STARPU_CUDA_WORKER}
  122. @item @code{STARPU_OPENCL_WORKER}
  123. @item @code{STARPU_GORDON_WORKER}
  124. @end table
  125. @end deftp
  126. @deftypefun unsigned starpu_worker_get_count (void)
  127. This function returns the number of workers (i.e. processing units executing
  128. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  129. @end deftypefun
  130. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  131. Returns the number of workers of the given type indicated by the argument. A positive
  132. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  133. the type is not valid otherwise.
  134. @end deftypefun
  135. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  136. This function returns the number of CPUs controlled by StarPU. The returned
  137. value should be at most @code{STARPU_MAXCPUS}.
  138. @end deftypefun
  139. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  140. This function returns the number of CUDA devices controlled by StarPU. The returned
  141. value should be at most @code{STARPU_MAXCUDADEVS}.
  142. @end deftypefun
  143. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  144. This function returns the number of OpenCL devices controlled by StarPU. The returned
  145. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  146. @end deftypefun
  147. @deftypefun unsigned starpu_spu_worker_get_count (void)
  148. This function returns the number of Cell SPUs controlled by StarPU.
  149. @end deftypefun
  150. @deftypefun int starpu_worker_get_id (void)
  151. This function returns the identifier of the current worker, i.e the one associated to the calling
  152. thread. The returned value is either -1 if the current context is not a StarPU
  153. worker (i.e. when called from the application outside a task or a callback), or
  154. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  155. @end deftypefun
  156. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  157. This function gets the list of identifiers of workers with the given
  158. type. It fills the workerids array with the identifiers of the workers that have the type
  159. indicated in the first argument. The maxsize argument indicates the size of the
  160. workids array. The returned value gives the number of identifiers that were put
  161. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  162. workers with the appropriate type: in that case, the array is filled with the
  163. maxsize first elements. To avoid such overflows, the value of maxsize can be
  164. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  165. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  166. @end deftypefun
  167. @deftypefun int starpu_worker_get_devid (int @var{id})
  168. This functions returns the device id of the given worker. The worker
  169. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  170. CUDA worker, this device identifier is the logical device identifier exposed by
  171. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  172. identifier of a CPU worker is the logical identifier of the core on which the
  173. worker was bound; this identifier is either provided by the OS or by the
  174. @code{hwloc} library in case it is available.
  175. @end deftypefun
  176. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  177. This function returns the type of processing unit associated to a
  178. worker. The worker identifier is a value returned by the
  179. @code{starpu_worker_get_id} function). The returned value
  180. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  181. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  182. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  183. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  184. identifier is unspecified.
  185. @end deftypefun
  186. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  187. This function allows to get the name of a given worker.
  188. StarPU associates a unique human readable string to each processing unit. This
  189. function copies at most the @var{maxlen} first bytes of the unique string
  190. associated to a worker identified by its identifier @var{id} into the
  191. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  192. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  193. function on an invalid identifier results in an unspecified behaviour.
  194. @end deftypefun
  195. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  196. This function returns the identifier of the memory node associated to the
  197. worker identified by @var{workerid}.
  198. @end deftypefun
  199. @node Data Library
  200. @section Data Library
  201. @menu
  202. * Introduction to Data Library::
  203. * Basic Data Library API::
  204. * Access registered data from the application::
  205. @end menu
  206. This section describes the data management facilities provided by StarPU.
  207. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  208. design their own data interfaces if required.
  209. @node Introduction to Data Library
  210. @subsection Introduction
  211. Data management is done at a high-level in StarPU: rather than accessing a mere
  212. list of contiguous buffers, the tasks may manipulate data that are described by
  213. a high-level construct which we call data interface.
  214. An example of data interface is the "vector" interface which describes a
  215. contiguous data array on a spefic memory node. This interface is a simple
  216. structure containing the number of elements in the array, the size of the
  217. elements, and the address of the array in the appropriate address space (this
  218. address may be invalid if there is no valid copy of the array in the memory
  219. node). More informations on the data interfaces provided by StarPU are
  220. given in @ref{Data Interfaces}.
  221. When a piece of data managed by StarPU is used by a task, the task
  222. implementation is given a pointer to an interface describing a valid copy of
  223. the data that is accessible from the current processing unit.
  224. Every worker is associated to a memory node which is a logical abstraction of
  225. the address space from which the processing unit gets its data. For instance,
  226. the memory node associated to the different CPU workers represents main memory
  227. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  228. Every memory node is identified by a logical index which is accessible from the
  229. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  230. to StarPU, the specified memory node indicates where the piece of data
  231. initially resides (we also call this memory node the home node of a piece of
  232. data).
  233. @node Basic Data Library API
  234. @subsection Basic Data Library API
  235. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  236. This function allocates data of the given size in main memory. It will also try to pin it in
  237. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  238. thus permit data transfer and computation overlapping. The allocated buffer must
  239. be freed thanks to the @code{starpu_free} function.
  240. @end deftypefun
  241. @deftypefun int starpu_free (void *@var{A})
  242. This function frees memory which has previously allocated with
  243. @code{starpu_malloc}.
  244. @end deftypefun
  245. @deftp {Data Type} {enum starpu_access_mode}
  246. This datatype describes a data access mode. The different available modes are:
  247. @table @asis
  248. @item @code{STARPU_R}: read-only mode.
  249. @item @code{STARPU_W}: write-only mode.
  250. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  251. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  252. @item @code{STARPU_REDUX} reduction mode. TODO: add an example in the advanced examples section.
  253. @end table
  254. @end deftp
  255. @deftp {Data Type} {starpu_data_handle_t}
  256. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  257. data. Once a piece of data has been registered to StarPU, it is associated to a
  258. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  259. over the entire machine, so that we can maintain data consistency and locate
  260. data replicates for instance.
  261. @end deftp
  262. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  263. Register a piece of data into the handle located at the @var{handleptr}
  264. address. The @var{data_interface} buffer contains the initial description of the
  265. data in the home node. The @var{ops} argument is a pointer to a structure
  266. describing the different methods used to manipulate this type of interface. See
  267. @ref{struct starpu_data_interface_ops} for more details on this structure.
  268. If @code{home_node} is -1, StarPU will automatically
  269. allocate the memory when it is used for the
  270. first time in write-only mode. Once such data handle has been automatically
  271. allocated, it is possible to access it using any access mode.
  272. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  273. matrix) which can be registered by the means of helper functions (e.g.
  274. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  275. @end deftypefun
  276. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  277. This function unregisters a data handle from StarPU. If the data was
  278. automatically allocated by StarPU because the home node was -1, all
  279. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  280. is put back into the home node in the buffer that was initially registered.
  281. Using a data handle that has been unregistered from StarPU results in an
  282. undefined behaviour.
  283. @end deftypefun
  284. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  285. This is the same as starpu_data_unregister, except that StarPU does not put back
  286. a valid copy into the home node, in the buffer that was initially registered.
  287. @end deftypefun
  288. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  289. Destroy all replicates of the data handle. After data invalidation, the first
  290. access to the handle must be performed in write-only mode. Accessing an
  291. invalidated data in read-mode results in undefined behaviour.
  292. @end deftypefun
  293. @c TODO create a specific sections about user interaction with the DSM ?
  294. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  295. This function sets the write-through mask of a given data, i.e. a bitmask of
  296. nodes where the data should be always replicated after modification.
  297. @end deftypefun
  298. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  299. Issue a prefetch request for a given data to a given node, i.e.
  300. requests that the data be replicated to the given node, so that it is available
  301. there for tasks. If the @var{async} parameter is 0, the call will block until
  302. the transfer is achieved, else the call will return as soon as the request is
  303. scheduled (which may however have to wait for a task completion).
  304. @end deftypefun
  305. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  306. Return the handle associated to ptr @var{ptr}.
  307. @end deftypefun
  308. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  309. Explicitly ask StarPU to allocate room for a piece of data on the specified
  310. memory node.
  311. @end deftypefun
  312. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  313. Query the status of the handle on the specified memory node.
  314. @end deftypefun
  315. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  316. This function allows to specify that a piece of data can be discarded
  317. without impacting the application.
  318. @end deftypefun
  319. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  320. This sets the codelets to be used for the @var{handle} when it is accessed in
  321. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  322. codelet, and reduction between per-worker buffers will be done with the
  323. @var{redux_cl} codelet.
  324. @end deftypefun
  325. @node Access registered data from the application
  326. @subsection Access registered data from the application
  327. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  328. The application must call this function prior to accessing registered data from
  329. main memory outside tasks. StarPU ensures that the application will get an
  330. up-to-date copy of the data in main memory located where the data was
  331. originally registered, and that all concurrent accesses (e.g. from tasks) will
  332. be consistent with the access mode specified in the @var{mode} argument.
  333. @code{starpu_data_release} must be called once the application does not need to
  334. access the piece of data anymore. Note that implicit data
  335. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  336. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  337. the data, unless that they have not been disabled explictly by calling
  338. @code{starpu_data_set_default_sequential_consistency_flag} or
  339. @code{starpu_data_set_sequential_consistency_flag}.
  340. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  341. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  342. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  343. @end deftypefun
  344. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  345. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  346. @code{starpu_data_release}. When the data specified in the first argument is
  347. available in the appropriate access mode, the callback function is executed.
  348. The application may access the requested data during the execution of this
  349. callback. The callback function must call @code{starpu_data_release} once the
  350. application does not need to access the piece of data anymore.
  351. Note that implicit data dependencies are also enforced by
  352. @code{starpu_data_acquire_cb} in case they are enabled.
  353. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  354. be called from task callbacks. Upon successful completion, this function
  355. returns 0.
  356. @end deftypefun
  357. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  358. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  359. except that the code to be executed in a callback is directly provided as a
  360. macro parameter, and the data handle is automatically released after it. This
  361. permits to easily execute code which depends on the value of some registered
  362. data. This is non-blocking too and may be called from task callbacks.
  363. @end defmac
  364. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  365. This function releases the piece of data acquired by the application either by
  366. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  367. @end deftypefun
  368. @node Data Interfaces
  369. @section Data Interfaces
  370. @menu
  371. * Registering Data::
  372. * Accessing Data Interfaces::
  373. @end menu
  374. @node Registering Data
  375. @subsection Registering Data
  376. There are several ways to register a memory region so that it can be managed by
  377. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  378. matrices as well as BCSR and CSR sparse matrices.
  379. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  380. Register a void interface. There is no data really associated to that
  381. interface, but it may be used as a synchronization mechanism. It also
  382. permits to express an abstract piece of data that is managed by the
  383. application internally: this makes it possible to forbid the
  384. concurrent execution of different tasks accessing the same "void" data
  385. in read-write concurrently.
  386. @end deftypefun
  387. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  388. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  389. typically a scalar, and initialize @var{handle} to represent this data
  390. item.
  391. @cartouche
  392. @smallexample
  393. float var;
  394. starpu_data_handle_t var_handle;
  395. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  396. @end smallexample
  397. @end cartouche
  398. @end deftypefun
  399. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  400. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  401. @var{ptr} and initialize @var{handle} to represent it.
  402. @cartouche
  403. @smallexample
  404. float vector[NX];
  405. starpu_data_handle_t vector_handle;
  406. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  407. sizeof(vector[0]));
  408. @end smallexample
  409. @end cartouche
  410. @end deftypefun
  411. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  412. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  413. pointed by @var{ptr} and initialize @var{handle} to represent it.
  414. @var{ld} specifies the number of elements between rows.
  415. a value greater than @var{nx} adds padding, which can be useful for
  416. alignment purposes.
  417. @cartouche
  418. @smallexample
  419. float *matrix;
  420. starpu_data_handle_t matrix_handle;
  421. matrix = (float*)malloc(width * height * sizeof(float));
  422. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  423. width, width, height, sizeof(float));
  424. @end smallexample
  425. @end cartouche
  426. @end deftypefun
  427. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  428. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  429. elements pointed by @var{ptr} and initialize @var{handle} to represent
  430. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  431. between rows and between z planes.
  432. @cartouche
  433. @smallexample
  434. float *block;
  435. starpu_data_handle_t block_handle;
  436. block = (float*)malloc(nx*ny*nz*sizeof(float));
  437. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  438. nx, nx*ny, nx, ny, nz, sizeof(float));
  439. @end smallexample
  440. @end cartouche
  441. @end deftypefun
  442. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  443. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  444. Compressed Sparse Row Representation) sparse matrix interface.
  445. TODO
  446. @end deftypefun
  447. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  448. This variant of @code{starpu_data_register} uses the CSR (Compressed
  449. Sparse Row Representation) sparse matrix interface.
  450. TODO
  451. @end deftypefun
  452. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  453. Return the interface associated with @var{handle} on @var{memory_node}.
  454. @end deftypefun
  455. @node Accessing Data Interfaces
  456. @subsection Accessing Data Interfaces
  457. Each data interface is provided with a set of field access functions.
  458. The ones using a @code{void *} parameter aimed to be used in codelet
  459. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  460. @deftp {Data Type} {enum starpu_data_interface_id}
  461. The different values are:
  462. @table @asis
  463. @item @code{STARPU_MATRIX_INTERFACE_ID}
  464. @item @code{STARPU_BLOCK_INTERFACE_ID}
  465. @item @code{STARPU_VECTOR_INTERFACE_ID}
  466. @item @code{STARPU_CSR_INTERFACE_ID}
  467. @item @code{STARPU_BCSR_INTERFACE_ID}
  468. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  469. @item @code{STARPU_VOID_INTERFACE_ID}
  470. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  471. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  472. @end table
  473. @end deftp
  474. @menu
  475. * Accessing Handle::
  476. * Accessing Variable Data Interfaces::
  477. * Accessing Vector Data Interfaces::
  478. * Accessing Matrix Data Interfaces::
  479. * Accessing Block Data Interfaces::
  480. * Accessing BCSR Data Interfaces::
  481. * Accessing CSR Data Interfaces::
  482. @end menu
  483. @node Accessing Handle
  484. @subsubsection Handle
  485. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  486. Return the pointer associated with @var{handle} on node @var{node} or
  487. @code{NULL} if @var{handle}'s interface does not support this
  488. operation or data for this handle is not allocated on that node.
  489. @end deftypefun
  490. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  491. Return the local pointer associated with @var{handle} or @code{NULL}
  492. if @var{handle}'s interface does not have data allocated locally
  493. @end deftypefun
  494. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  495. Return the unique identifier of the interface associated with the given @var{handle}.
  496. @end deftypefun
  497. @node Accessing Variable Data Interfaces
  498. @subsubsection Variable Data Interfaces
  499. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  500. Return the size of the variable designated by @var{handle}.
  501. @end deftypefun
  502. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  503. Return a pointer to the variable designated by @var{handle}.
  504. @end deftypefun
  505. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  506. Return a pointer to the variable designated by @var{interface}.
  507. @end defmac
  508. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  509. Return the size of the variable designated by @var{interface}.
  510. @end defmac
  511. @node Accessing Vector Data Interfaces
  512. @subsubsection Vector Data Interfaces
  513. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  514. Return the number of elements registered into the array designated by @var{handle}.
  515. @end deftypefun
  516. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  517. Return the size of each element of the array designated by @var{handle}.
  518. @end deftypefun
  519. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  520. Return the local pointer associated with @var{handle}.
  521. @end deftypefun
  522. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  523. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  524. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  525. @end defmac
  526. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  527. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  528. documented below has to be used in addition to this.
  529. @end defmac
  530. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  531. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  532. @end defmac
  533. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  534. Return the number of elements registered into the array designated by @var{interface}.
  535. @end defmac
  536. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  537. Return the size of each element of the array designated by @var{interface}.
  538. @end defmac
  539. @node Accessing Matrix Data Interfaces
  540. @subsubsection Matrix Data Interfaces
  541. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  542. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  543. @end deftypefun
  544. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  545. Return the number of elements on the y-axis of the matrix designated by
  546. @var{handle}.
  547. @end deftypefun
  548. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  549. Return the number of elements between each row of the matrix designated by
  550. @var{handle}. Maybe be equal to nx when there is no padding.
  551. @end deftypefun
  552. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  553. Return the local pointer associated with @var{handle}.
  554. @end deftypefun
  555. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  556. Return the size of the elements registered into the matrix designated by
  557. @var{handle}.
  558. @end deftypefun
  559. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  560. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  561. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  562. used instead.
  563. @end defmac
  564. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  565. Return a device handle for the matrix designated by @var{interface}, to be used
  566. on OpenCL. The offset documented below has to be used in addition to this.
  567. @end defmac
  568. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  569. Return the offset in the matrix designated by @var{interface}, to be used with
  570. the device handle.
  571. @end defmac
  572. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  573. Return the number of elements on the x-axis of the matrix designated by
  574. @var{interface}.
  575. @end defmac
  576. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  577. Return the number of elements on the y-axis of the matrix designated by
  578. @var{interface}.
  579. @end defmac
  580. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  581. Return the number of elements between each row of the matrix designated by
  582. @var{interface}. May be equal to nx when there is no padding.
  583. @end defmac
  584. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  585. Return the size of the elements registered into the matrix designated by
  586. @var{interface}.
  587. @end defmac
  588. @node Accessing Block Data Interfaces
  589. @subsubsection Block Data Interfaces
  590. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  591. Return the number of elements on the x-axis of the block designated by @var{handle}.
  592. @end deftypefun
  593. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  594. Return the number of elements on the y-axis of the block designated by @var{handle}.
  595. @end deftypefun
  596. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  597. Return the number of elements on the z-axis of the block designated by @var{handle}.
  598. @end deftypefun
  599. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  600. Return the number of elements between each row of the block designated by
  601. @var{handle}, in the format of the current memory node.
  602. @end deftypefun
  603. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  604. Return the number of elements between each z plane of the block designated by
  605. @var{handle}, in the format of the current memory node.
  606. @end deftypefun
  607. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  608. Return the local pointer associated with @var{handle}.
  609. @end deftypefun
  610. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  611. Return the size of the elements of the block designated by @var{handle}.
  612. @end deftypefun
  613. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  614. Return a pointer to the block designated by @var{interface}.
  615. @end defmac
  616. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  617. Return a device handle for the block designated by @var{interface}, to be used
  618. on OpenCL. The offset document below has to be used in addition to this.
  619. @end defmac
  620. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  621. Return the offset in the block designated by @var{interface}, to be used with
  622. the device handle.
  623. @end defmac
  624. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  625. Return the number of elements on the x-axis of the block designated by @var{handle}.
  626. @end defmac
  627. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  628. Return the number of elements on the y-axis of the block designated by @var{handle}.
  629. @end defmac
  630. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  631. Return the number of elements on the z-axis of the block designated by @var{handle}.
  632. @end defmac
  633. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  634. Return the number of elements between each row of the block designated by
  635. @var{interface}. May be equal to nx when there is no padding.
  636. @end defmac
  637. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  638. Return the number of elements between each z plane of the block designated by
  639. @var{interface}. May be equal to nx*ny when there is no padding.
  640. @end defmac
  641. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  642. Return the size of the elements of the matrix designated by @var{interface}.
  643. @end defmac
  644. @node Accessing BCSR Data Interfaces
  645. @subsubsection BCSR Data Interfaces
  646. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  647. Return the number of non-zero elements in the matrix designated by @var{handle}.
  648. @end deftypefun
  649. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  650. Return the number of rows (in terms of blocks of size r*c) in the matrix
  651. designated by @var{handle}.
  652. @end deftypefun
  653. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  654. Return the index at which all arrays (the column indexes, the row pointers...)
  655. of the matrix desginated by @var{handle} start.
  656. @end deftypefun
  657. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  658. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  659. @end deftypefun
  660. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  661. Return a pointer to the column index, which holds the positions of the non-zero
  662. entries in the matrix designated by @var{handle}.
  663. @end deftypefun
  664. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  665. Return the row pointer array of the matrix designated by @var{handle}.
  666. @end deftypefun
  667. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  668. Return the number of rows in a block.
  669. @end deftypefun
  670. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  671. Return the numberof columns in a block.
  672. @end deftypefun
  673. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  674. Return the size of the elements in the matrix designated by @var{handle}.
  675. @end deftypefun
  676. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  677. Return the number of non-zero values in the matrix designated by @var{interface}.
  678. @end defmac
  679. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  680. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  681. @end defmac
  682. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  683. Return a pointer to the column index of the matrix designated by @var{interface}.
  684. @end defmac
  685. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  686. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  687. @end defmac
  688. @node Accessing CSR Data Interfaces
  689. @subsubsection CSR Data Interfaces
  690. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  691. Return the number of non-zero values in the matrix designated by @var{handle}.
  692. @end deftypefun
  693. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  694. Return the size of the row pointer array of the matrix designated by @var{handle}.
  695. @end deftypefun
  696. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  697. Return the index at which all arrays (the column indexes, the row pointers...)
  698. of the matrix designated by @var{handle} start.
  699. @end deftypefun
  700. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  701. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  702. @end deftypefun
  703. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  704. Return a local pointer to the column index of the matrix designated by @var{handle}.
  705. @end deftypefun
  706. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  707. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  708. @end deftypefun
  709. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  710. Return the size of the elements registered into the matrix designated by @var{handle}.
  711. @end deftypefun
  712. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  713. Return the number of non-zero values in the matrix designated by @var{interface}.
  714. @end defmac
  715. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  716. Return the size of the row pointer array of the matrix designated by @var{interface}.
  717. @end defmac
  718. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  719. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  720. @end defmac
  721. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  722. Return a pointer to the column index of the matrix designated by @var{interface}.
  723. @end defmac
  724. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  725. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  726. @end defmac
  727. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  728. Return the index at which all arrays (the column indexes, the row pointers...)
  729. of the @var{interface} start.
  730. @end defmac
  731. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  732. Return the size of the elements registered into the matrix designated by @var{interface}.
  733. @end defmac
  734. @node Data Partition
  735. @section Data Partition
  736. @menu
  737. * Basic API::
  738. * Predefined filter functions::
  739. @end menu
  740. @node Basic API
  741. @subsection Basic API
  742. @deftp {Data Type} {struct starpu_data_filter}
  743. The filter structure describes a data partitioning operation, to be given to the
  744. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  745. for an example. The different fields are:
  746. @table @asis
  747. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  748. This function fills the @code{child_interface} structure with interface
  749. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  750. @item @code{unsigned nchildren}
  751. This is the number of parts to partition the data into.
  752. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  753. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  754. children depends on the actual data (e.g. the number of blocks in a sparse
  755. matrix).
  756. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  757. In case the resulting children use a different data interface, this function
  758. returns which interface is used by child number @code{id}.
  759. @item @code{unsigned filter_arg}
  760. Allow to define an additional parameter for the filter function.
  761. @item @code{void *filter_arg_ptr}
  762. Allow to define an additional pointer parameter for the filter
  763. function, such as the sizes of the different parts.
  764. @end table
  765. @end deftp
  766. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  767. @anchor{starpu_data_partition}
  768. This requests partitioning one StarPU data @var{initial_handle} into several
  769. subdata according to the filter @var{f}, as shown in the following example:
  770. @cartouche
  771. @smallexample
  772. struct starpu_data_filter f = @{
  773. .filter_func = starpu_vertical_block_filter_func,
  774. .nchildren = nslicesx,
  775. .get_nchildren = NULL,
  776. .get_child_ops = NULL
  777. @};
  778. starpu_data_partition(A_handle, &f);
  779. @end smallexample
  780. @end cartouche
  781. @end deftypefun
  782. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  783. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  784. collected back into one big piece in the @var{gathering_node} (usually 0).
  785. @cartouche
  786. @smallexample
  787. starpu_data_unpartition(A_handle, 0);
  788. @end smallexample
  789. @end cartouche
  790. @end deftypefun
  791. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  792. This function returns the number of children.
  793. @end deftypefun
  794. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  795. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  796. @end deftypefun
  797. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  798. After partitioning a StarPU data by applying a filter,
  799. @code{starpu_data_get_sub_data} can be used to get handles for each of
  800. the data portions. @var{root_data} is the parent data that was
  801. partitioned. @var{depth} is the number of filters to traverse (in
  802. case several filters have been applied, to e.g. partition in row
  803. blocks, and then in column blocks), and the subsequent
  804. parameters are the indexes. The function returns a handle to the
  805. subdata.
  806. @cartouche
  807. @smallexample
  808. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  809. @end smallexample
  810. @end cartouche
  811. @end deftypefun
  812. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  813. This function is similar to @code{starpu_data_get_sub_data} but uses a
  814. va_list for the parameter list.
  815. @end deftypefun
  816. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  817. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  818. recursively. @var{nfilters} pointers to variables of the type
  819. starpu_data_filter should be given.
  820. @end deftypefun
  821. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  822. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  823. recursively. It uses a va_list of pointers to variables of the typer
  824. starpu_data_filter.
  825. @end deftypefun
  826. @node Predefined filter functions
  827. @subsection Predefined filter functions
  828. @menu
  829. * Partitioning BCSR Data::
  830. * Partitioning BLAS interface::
  831. * Partitioning Vector Data::
  832. * Partitioning Block Data::
  833. @end menu
  834. This section gives a partial list of the predefined partitioning functions.
  835. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  836. list can be found in @code{starpu_data_filters.h} .
  837. @node Partitioning BCSR Data
  838. @subsubsection Partitioning BCSR Data
  839. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  840. This partitions a block-sparse matrix into dense matrices.
  841. @end deftypefun
  842. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  843. This partitions a block-sparse matrix into vertical block-sparse matrices.
  844. @end deftypefun
  845. @node Partitioning BLAS interface
  846. @subsubsection Partitioning BLAS interface
  847. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  848. This partitions a dense Matrix into horizontal blocks.
  849. @end deftypefun
  850. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  851. This partitions a dense Matrix into vertical blocks.
  852. @end deftypefun
  853. @node Partitioning Vector Data
  854. @subsubsection Partitioning Vector Data
  855. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  856. Return in @code{*@var{child_interface}} the @var{id}th element of the
  857. vector represented by @var{father_interface} once partitioned in
  858. @var{nparts} chunks of equal size.
  859. @end deftypefun
  860. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  861. Return in @code{*@var{child_interface}} the @var{id}th element of the
  862. vector represented by @var{father_interface} once partitioned into
  863. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  864. @code{*@var{f}}.
  865. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  866. @code{uint32_t} elements, each of which specifies the number of elements
  867. in each chunk of the partition.
  868. @end deftypefun
  869. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  870. Return in @code{*@var{child_interface}} the @var{id}th element of the
  871. vector represented by @var{father_interface} once partitioned in two
  872. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  873. @code{0} or @code{1}.
  874. @end deftypefun
  875. @node Partitioning Block Data
  876. @subsubsection Partitioning Block Data
  877. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  878. This partitions a 3D matrix along the X axis.
  879. @end deftypefun
  880. @node Codelets and Tasks
  881. @section Codelets and Tasks
  882. This section describes the interface to manipulate codelets and tasks.
  883. @deftp {Data Type} {enum starpu_codelet_type}
  884. Describes the type of parallel task. The different values are:
  885. @table @asis
  886. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  887. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  888. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  889. @code{starpu_combined_worker_get_rank} to distribute the work
  890. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  891. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  892. determine how many threads should be started.
  893. @end table
  894. See @ref{Parallel Tasks} for details.
  895. @end deftp
  896. @defmac STARPU_CPU
  897. This macro is used when setting the field @code{where} of a @code{struct
  898. starpu_codelet} to specify the codelet may be executed on a CPU
  899. processing unit.
  900. @end defmac
  901. @defmac STARPU_CUDA
  902. This macro is used when setting the field @code{where} of a @code{struct
  903. starpu_codelet} to specify the codelet may be executed on a CUDA
  904. processing unit.
  905. @end defmac
  906. @defmac STARPU_SPU
  907. This macro is used when setting the field @code{where} of a @code{struct
  908. starpu_codelet} to specify the codelet may be executed on a SPU
  909. processing unit.
  910. @end defmac
  911. @defmac STARPU_GORDON
  912. This macro is used when setting the field @code{where} of a @code{struct
  913. starpu_codelet} to specify the codelet may be executed on a Cell
  914. processing unit.
  915. @end defmac
  916. @defmac STARPU_OPENCL
  917. This macro is used when setting the field @code{where} of a @code{struct
  918. starpu_codelet} to specify the codelet may be executed on a OpenCL
  919. processing unit.
  920. @end defmac
  921. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  922. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  923. with this macro indicates the codelet will have several
  924. implementations. The use of this macro is deprecated. One should
  925. always only define the field @code{cpu_funcs}.
  926. @end defmac
  927. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  928. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  929. with this macro indicates the codelet will have several
  930. implementations. The use of this macro is deprecated. One should
  931. always only define the field @code{cuda_funcs}.
  932. @end defmac
  933. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  934. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  935. with this macro indicates the codelet will have several
  936. implementations. The use of this macro is deprecated. One should
  937. always only define the field @code{opencl_funcs}.
  938. @end defmac
  939. @deftp {Data Type} {struct starpu_codelet}
  940. The codelet structure describes a kernel that is possibly implemented on various
  941. targets. For compatibility, make sure to initialize the whole structure to zero.
  942. @table @asis
  943. @item @code{uint32_t where} (optional)
  944. Indicates which types of processing units are able to execute the
  945. codelet. The different values
  946. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  947. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  948. on which types of processing units the codelet can be executed.
  949. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  950. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  951. indicates that it is only available on Cell SPUs. If the field is
  952. unset, its value will be automatically set based on the availability
  953. of the @code{XXX_funcs} fields defined below.
  954. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  955. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  956. @item @code{enum starpu_codelet_type type} (optional)
  957. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  958. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  959. implementation is also available. See @ref{Parallel Tasks} for details.
  960. @item @code{int max_parallelism} (optional)
  961. If a parallel implementation is available, this denotes the maximum combined
  962. worker size that StarPU will use to execute parallel tasks for this codelet.
  963. @item @code{starpu_cpu_func_t cpu_func} (optional)
  964. This field has been made deprecated. One should use instead the
  965. @code{cpu_funcs} field.
  966. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  967. Is an array of function pointers to the CPU implementations of the codelet.
  968. It must be terminated by a NULL value.
  969. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  970. argument being the array of data managed by the data management library, and
  971. the second argument is a pointer to the argument passed from the @code{cl_arg}
  972. field of the @code{starpu_task} structure.
  973. If the @code{where} field is set, then the @code{cpu_funcs} field is
  974. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  975. field, it must be non-null otherwise.
  976. @item @code{starpu_cuda_func_t cuda_func} (optional)
  977. This field has been made deprecated. One should use instead the
  978. @code{cuda_funcs} field.
  979. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  980. Is an array of function pointers to the CUDA implementations of the codelet.
  981. It must be terminated by a NULL value.
  982. @emph{The functions must be host-functions written in the CUDA runtime
  983. API}. Their prototype must
  984. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  985. If the @code{where} field is set, then the @code{cuda_funcs}
  986. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  987. field, it must be non-null otherwise.
  988. @item @code{starpu_opencl_func_t opencl_func} (optional)
  989. This field has been made deprecated. One should use instead the
  990. @code{opencl_funcs} field.
  991. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  992. Is an array of function pointers to the OpenCL implementations of the codelet.
  993. It must be terminated by a NULL value.
  994. The functions prototype must be:
  995. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  996. If the @code{where} field is set, then the @code{opencl_funcs} field
  997. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  998. field, it must be non-null otherwise.
  999. @item @code{uint8_t gordon_func} (optional)
  1000. This field has been made deprecated. One should use instead the
  1001. @code{gordon_funcs} field.
  1002. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1003. Is an array of index of the Cell SPU implementations of the codelet within the
  1004. Gordon library.
  1005. It must be terminated by a NULL value.
  1006. See Gordon documentation for more details on how to register a kernel and
  1007. retrieve its index.
  1008. @item @code{unsigned nbuffers}
  1009. Specifies the number of arguments taken by the codelet. These arguments are
  1010. managed by the DSM and are accessed from the @code{void *buffers[]}
  1011. array. The constant argument passed with the @code{cl_arg} field of the
  1012. @code{starpu_task} structure is not counted in this number. This value should
  1013. not be above @code{STARPU_NMAXBUFS}.
  1014. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1015. Is an array of @code{enum starpu_access_mode}. It describes the
  1016. required access modes to the data neeeded by the codelet (e.g.
  1017. @code{STARPU_RW}). The number of entries in this array must be
  1018. specified in the @code{nbuffers} field (defined above), and should not
  1019. exceed @code{STARPU_NMAXBUFS}.
  1020. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1021. option when configuring StarPU.
  1022. @item @code{struct starpu_perfmodel *model} (optional)
  1023. This is a pointer to the task duration performance model associated to this
  1024. codelet. This optional field is ignored when set to @code{NULL}.
  1025. @item @code{struct starpu_perfmodel *power_model} (optional)
  1026. This is a pointer to the task power consumption performance model associated
  1027. to this codelet. This optional field is ignored when set to @code{NULL}.
  1028. In the case of parallel codelets, this has to account for all processing units
  1029. involved in the parallel execution.
  1030. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1031. Statistics collected at runtime: this is filled by StarPU and should not be
  1032. accessed directly, but for example by calling the
  1033. @code{starpu_display_codelet_stats} function (See
  1034. @ref{starpu_display_codelet_stats} for details).
  1035. @item @code{const char *name} (optional)
  1036. Define the name of the codelet. This can be useful for debugging purposes.
  1037. @end table
  1038. @end deftp
  1039. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1040. Initialize @var{cl} with default values. Codelets should preferably be
  1041. initialized statically as shown in @ref{Defining a Codelet}. However
  1042. such a initialisation is not always possible, e.g. when using C++.
  1043. @end deftypefun
  1044. @deftp {Data Type} {enum starpu_task_status}
  1045. State of a task, can be either of
  1046. @table @asis
  1047. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1048. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1049. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1050. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1051. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1052. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1053. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1054. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1055. @end table
  1056. @end deftp
  1057. @deftp {Data Type} {struct starpu_task}
  1058. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1059. processing units managed by StarPU. It instantiates a codelet. It can either be
  1060. allocated dynamically with the @code{starpu_task_create} method, or declared
  1061. statically. In the latter case, the programmer has to zero the
  1062. @code{starpu_task} structure and to fill the different fields properly. The
  1063. indicated default values correspond to the configuration of a task allocated
  1064. with @code{starpu_task_create}.
  1065. @table @asis
  1066. @item @code{struct starpu_codelet *cl}
  1067. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1068. describes where the kernel should be executed, and supplies the appropriate
  1069. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1070. such empty tasks can be useful for synchronization purposes.
  1071. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1072. This field has been made deprecated. One should use instead the
  1073. @code{handles} field to specify the handles to the data accessed by
  1074. the task. The access modes are now defined in the @code{mode} field of
  1075. the @code{struct starpu_codelet cl} field defined above.
  1076. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1077. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1078. to the different pieces of data accessed by the task. The number
  1079. of entries in this array must be specified in the @code{nbuffers} field of the
  1080. @code{struct starpu_codelet} structure, and should not exceed
  1081. @code{STARPU_NMAXBUFS}.
  1082. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1083. option when configuring StarPU.
  1084. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1085. The actual data pointers to the memory node where execution will happen, managed
  1086. by the DSM.
  1087. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1088. This pointer is passed to the codelet through the second argument
  1089. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1090. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1091. argument.
  1092. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1093. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1094. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1095. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1096. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1097. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1098. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1099. codelets, where the @code{cl_arg} pointer is given as such.
  1100. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1101. This is a function pointer of prototype @code{void (*f)(void *)} which
  1102. specifies a possible callback. If this pointer is non-null, the callback
  1103. function is executed @emph{on the host} after the execution of the task. The
  1104. callback is passed the value contained in the @code{callback_arg} field. No
  1105. callback is executed if the field is set to @code{NULL}.
  1106. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1107. This is the pointer passed to the callback function. This field is ignored if
  1108. the @code{callback_func} is set to @code{NULL}.
  1109. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1110. If set, this flag indicates that the task should be associated with the tag
  1111. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1112. with the task and to express task dependencies easily.
  1113. @item @code{starpu_tag_t tag_id}
  1114. This fields contains the tag associated to the task if the @code{use_tag} field
  1115. was set, it is ignored otherwise.
  1116. @item @code{unsigned synchronous}
  1117. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1118. returns only when the task has been executed (or if no worker is able to
  1119. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1120. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1121. This field indicates a level of priority for the task. This is an integer value
  1122. that must be set between the return values of the
  1123. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1124. and that of the @code{starpu_sched_get_max_priority} for the most important
  1125. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1126. are provided for convenience and respectively returns value of
  1127. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1128. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1129. order to allow static task initialization. Scheduling strategies that take
  1130. priorities into account can use this parameter to take better scheduling
  1131. decisions, but the scheduling policy may also ignore it.
  1132. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1133. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1134. task to the worker specified by the @code{workerid} field.
  1135. @item @code{unsigned workerid} (optional)
  1136. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1137. which is the identifier of the worker that should process this task (as
  1138. returned by @code{starpu_worker_get_id}). This field is ignored if
  1139. @code{execute_on_a_specific_worker} field is set to 0.
  1140. @item @code{starpu_task_bundle_t bundle} (optional)
  1141. The bundle that includes this task. If no bundle is used, this should be NULL.
  1142. @item @code{int detach} (optional) (default: @code{1})
  1143. If this flag is set, it is not possible to synchronize with the task
  1144. by the means of @code{starpu_task_wait} later on. Internal data structures
  1145. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1146. flag is not set.
  1147. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1148. If this flag is set, the task structure will automatically be freed, either
  1149. after the execution of the callback if the task is detached, or during
  1150. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1151. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1152. called explicitly. Setting this flag for a statically allocated task structure
  1153. will result in undefined behaviour. The flag is set to 1 when the task is
  1154. created by calling @code{starpu_task_create()}. Note that
  1155. @code{starpu_task_wait_for_all} will not free any task.
  1156. @item @code{int regenerate} (optional)
  1157. If this flag is set, the task will be re-submitted to StarPU once it has been
  1158. executed. This flag must not be set if the destroy flag is set too.
  1159. @item @code{enum starpu_task_status status} (optional)
  1160. Current state of the task.
  1161. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1162. Profiling information for the task.
  1163. @item @code{double predicted} (output field)
  1164. Predicted duration of the task. This field is only set if the scheduling
  1165. strategy used performance models.
  1166. @item @code{double predicted_transfer} (optional)
  1167. Predicted data transfer duration for the task in microseconds. This field is
  1168. only valid if the scheduling strategy uses performance models.
  1169. @item @code{struct starpu_task *prev}
  1170. A pointer to the previous task. This should only be used by StarPU.
  1171. @item @code{struct starpu_task *next}
  1172. A pointer to the next task. This should only be used by StarPU.
  1173. @item @code{unsigned int mf_skip}
  1174. todo
  1175. @item @code{void *starpu_private}
  1176. This is private to StarPU, do not modify. If the task is allocated by hand
  1177. (without starpu_task_create), this field should be set to NULL.
  1178. @item @code{int magic}
  1179. This field is set when initializing a task. It prevents a task from being
  1180. submitted if it has not been properly initialized.
  1181. @end table
  1182. @end deftp
  1183. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1184. Initialize @var{task} with default values. This function is implicitly
  1185. called by @code{starpu_task_create}. By default, tasks initialized with
  1186. @code{starpu_task_init} must be deinitialized explicitly with
  1187. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1188. using @code{STARPU_TASK_INITIALIZER} defined below.
  1189. @end deftypefun
  1190. @defmac STARPU_TASK_INITIALIZER
  1191. It is possible to initialize statically allocated tasks with this
  1192. value. This is equivalent to initializing a starpu_task structure with
  1193. the @code{starpu_task_init} function defined above.
  1194. @end defmac
  1195. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1196. Allocate a task structure and initialize it with default values. Tasks
  1197. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1198. task is terminated. This means that the task pointer can not be used any more
  1199. once the task is submitted, since it can be executed at any time (unless
  1200. dependencies make it wait) and thus freed at any time.
  1201. If the destroy flag is explicitly unset, the resources used
  1202. by the task have to be freed by calling
  1203. @code{starpu_task_destroy}.
  1204. @end deftypefun
  1205. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1206. Release all the structures automatically allocated to execute @var{task}. This is
  1207. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  1208. freed. This should be used for statically allocated tasks for instance.
  1209. @end deftypefun
  1210. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1211. Free the resource allocated during @code{starpu_task_create} and
  1212. associated with @var{task}. This function is already called automatically
  1213. after the execution of a task when the @code{destroy} flag of the
  1214. @code{starpu_task} structure is set, which is the default for tasks created by
  1215. @code{starpu_task_create}. Calling this function on a statically allocated task
  1216. results in an undefined behaviour.
  1217. @end deftypefun
  1218. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1219. This function blocks until @var{task} has been executed. It is not possible to
  1220. synchronize with a task more than once. It is not possible to wait for
  1221. synchronous or detached tasks.
  1222. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1223. indicates that the specified task was either synchronous or detached.
  1224. @end deftypefun
  1225. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1226. This function submits @var{task} to StarPU. Calling this function does
  1227. not mean that the task will be executed immediately as there can be data or task
  1228. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1229. scheduling this task with respect to such dependencies.
  1230. This function returns immediately if the @code{synchronous} field of the
  1231. @code{starpu_task} structure was set to 0, and block until the termination of
  1232. the task otherwise. It is also possible to synchronize the application with
  1233. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1234. function for instance.
  1235. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1236. means that there is no worker able to process this task (e.g. there is no GPU
  1237. available and this task is only implemented for CUDA devices).
  1238. @end deftypefun
  1239. @deftypefun int starpu_task_wait_for_all (void)
  1240. This function blocks until all the tasks that were submitted are terminated. It
  1241. does not destroy these tasks.
  1242. @end deftypefun
  1243. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1244. This function returns the task currently executed by the worker, or
  1245. NULL if it is called either from a thread that is not a task or simply
  1246. because there is no task being executed at the moment.
  1247. @end deftypefun
  1248. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1249. @anchor{starpu_display_codelet_stats}
  1250. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1251. @end deftypefun
  1252. @deftypefun int starpu_task_wait_for_no_ready (void)
  1253. This function waits until there is no more ready task.
  1254. @end deftypefun
  1255. @c Callbacks: what can we put in callbacks ?
  1256. @node Explicit Dependencies
  1257. @section Explicit Dependencies
  1258. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1259. Declare task dependencies between a @var{task} and an array of tasks of length
  1260. @var{ndeps}. This function must be called prior to the submission of the task,
  1261. but it may called after the submission or the execution of the tasks in the
  1262. array, provided the tasks are still valid (ie. they were not automatically
  1263. destroyed). Calling this function on a task that was already submitted or with
  1264. an entry of @var{task_array} that is not a valid task anymore results in an
  1265. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1266. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1267. same task, in this case, the dependencies are added. It is possible to have
  1268. redundancy in the task dependencies.
  1269. @end deftypefun
  1270. @deftp {Data Type} {starpu_tag_t}
  1271. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1272. dependencies between tasks by the means of those tags. To do so, fill the
  1273. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1274. be arbitrary) and set the @code{use_tag} field to 1.
  1275. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1276. not be started until the tasks which holds the declared dependency tags are
  1277. completed.
  1278. @end deftp
  1279. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1280. Specify the dependencies of the task identified by tag @var{id}. The first
  1281. argument specifies the tag which is configured, the second argument gives the
  1282. number of tag(s) on which @var{id} depends. The following arguments are the
  1283. tags which have to be terminated to unlock the task.
  1284. This function must be called before the associated task is submitted to StarPU
  1285. with @code{starpu_task_submit}.
  1286. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1287. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1288. typically need to be explicitly casted. Using the
  1289. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1290. @cartouche
  1291. @smallexample
  1292. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1293. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1294. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1295. @end smallexample
  1296. @end cartouche
  1297. @end deftypefun
  1298. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1299. This function is similar to @code{starpu_tag_declare_deps}, except
  1300. that its does not take a variable number of arguments but an array of
  1301. tags of size @var{ndeps}.
  1302. @cartouche
  1303. @smallexample
  1304. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1305. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1306. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1307. @end smallexample
  1308. @end cartouche
  1309. @end deftypefun
  1310. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1311. This function blocks until the task associated to tag @var{id} has been
  1312. executed. This is a blocking call which must therefore not be called within
  1313. tasks or callbacks, but only from the application directly. It is possible to
  1314. synchronize with the same tag multiple times, as long as the
  1315. @code{starpu_tag_remove} function is not called. Note that it is still
  1316. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1317. data structure was freed (e.g. if the @code{destroy} flag of the
  1318. @code{starpu_task} was enabled).
  1319. @end deftypefun
  1320. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1321. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1322. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1323. terminated.
  1324. @end deftypefun
  1325. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1326. This function releases the resources associated to tag @var{id}. It can be
  1327. called once the corresponding task has been executed and when there is
  1328. no other tag that depend on this tag anymore.
  1329. @end deftypefun
  1330. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1331. This function explicitly unlocks tag @var{id}. It may be useful in the
  1332. case of applications which execute part of their computation outside StarPU
  1333. tasks (e.g. third-party libraries). It is also provided as a
  1334. convenient tool for the programmer, for instance to entirely construct the task
  1335. DAG before actually giving StarPU the opportunity to execute the tasks.
  1336. @end deftypefun
  1337. @node Implicit Data Dependencies
  1338. @section Implicit Data Dependencies
  1339. In this section, we describe how StarPU makes it possible to insert implicit
  1340. task dependencies in order to enforce sequential data consistency. When this
  1341. data consistency is enabled on a specific data handle, any data access will
  1342. appear as sequentially consistent from the application. For instance, if the
  1343. application submits two tasks that access the same piece of data in read-only
  1344. mode, and then a third task that access it in write mode, dependencies will be
  1345. added between the two first tasks and the third one. Implicit data dependencies
  1346. are also inserted in the case of data accesses from the application.
  1347. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1348. Set the default sequential consistency flag. If a non-zero value is passed, a
  1349. sequential data consistency will be enforced for all handles registered after
  1350. this function call, otherwise it is disabled. By default, StarPU enables
  1351. sequential data consistency. It is also possible to select the data consistency
  1352. mode of a specific data handle with the
  1353. @code{starpu_data_set_sequential_consistency_flag} function.
  1354. @end deftypefun
  1355. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1356. Return the default sequential consistency flag
  1357. @end deftypefun
  1358. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1359. Sets the data consistency mode associated to a data handle. The consistency
  1360. mode set using this function has the priority over the default mode which can
  1361. be set with @code{starpu_data_set_sequential_consistency_flag}.
  1362. @end deftypefun
  1363. @node Performance Model API
  1364. @section Performance Model API
  1365. @deftp {Data Type} {enum starpu_perf_archtype}
  1366. Enumerates the various types of architectures.
  1367. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1368. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1369. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1370. @table @asis
  1371. @item @code{STARPU_CPU_DEFAULT}
  1372. @item @code{STARPU_CUDA_DEFAULT}
  1373. @item @code{STARPU_OPENCL_DEFAULT}
  1374. @item @code{STARPU_GORDON_DEFAULT}
  1375. @end table
  1376. @end deftp
  1377. @deftp {Data Type} {enum starpu_perfmodel_type}
  1378. The possible values are:
  1379. @table @asis
  1380. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1381. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1382. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1383. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1384. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1385. @end table
  1386. @end deftp
  1387. @deftp {Data Type} {struct starpu_perfmodel}
  1388. @anchor{struct starpu_perfmodel}
  1389. contains all information about a performance model. At least the
  1390. @code{type} and @code{symbol} fields have to be filled when defining a
  1391. performance model for a codelet. If not provided, other fields have to be zero.
  1392. @table @asis
  1393. @item @code{type}
  1394. is the type of performance model @code{enum starpu_perfmodel_type}:
  1395. @code{STARPU_HISTORY_BASED},
  1396. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1397. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1398. @code{per_arch} has to be filled with functions which return the cost in
  1399. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1400. a function that returns the cost in micro-seconds on a CPU, timing on other
  1401. archs will be determined by multiplying by an arch-specific factor.
  1402. @item @code{const char *symbol}
  1403. is the symbol name for the performance model, which will be used as
  1404. file name to store the model.
  1405. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1406. This field is deprecated. Use instead the @code{cost_function} field.
  1407. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1408. Used by @code{STARPU_COMMON}: takes a task and
  1409. implementation number, and must return a task duration estimation in micro-seconds.
  1410. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1411. Used by @code{STARPU_HISTORY_BASED} and
  1412. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1413. implementation number, and returns the size to be used as index for
  1414. history and regression.
  1415. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1416. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1417. starpu_per_arch_perfmodel} structures.
  1418. @item @code{unsigned is_loaded}
  1419. Whether the performance model is already loaded from the disk.
  1420. @item @code{unsigned benchmarking}
  1421. Whether the performance model is still being calibrated.
  1422. @item @code{pthread_rwlock_t model_rwlock}
  1423. Lock to protect concurrency between loading from disk (W), updating the values
  1424. (W), and making a performance estimation (R).
  1425. @end table
  1426. @end deftp
  1427. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1428. contains information about the performance model of a given arch.
  1429. @table @asis
  1430. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1431. This field is deprecated. Use instead the @code{cost_function} field.
  1432. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1433. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1434. target arch and implementation number (as mere conveniency, since the array
  1435. is already indexed by these), and must return a task duration estimation in
  1436. micro-seconds.
  1437. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1438. starpu_perf_archtype arch, unsigned nimpl)}
  1439. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1440. case it depends on the architecture-specific implementation.
  1441. @item @code{struct starpu_htbl32_node *history}
  1442. The history of performance measurements.
  1443. @item @code{struct starpu_history_list *list}
  1444. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1445. records all execution history measures.
  1446. @item @code{struct starpu_regression_model regression}
  1447. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1448. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1449. regression.
  1450. @end table
  1451. @end deftp
  1452. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1453. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1454. @end deftypefun
  1455. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1456. returns the path to the debugging information for the performance model.
  1457. @end deftypefun
  1458. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1459. returns the architecture name for @var{arch}.
  1460. @end deftypefun
  1461. @deftypefun void starpu_force_bus_sampling (void)
  1462. forces sampling the bus performance model again.
  1463. @end deftypefun
  1464. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1465. returns the architecture type of a given worker.
  1466. @end deftypefun
  1467. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1468. prints a list of all performance models on @var{output}.
  1469. @end deftypefun
  1470. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1471. prints a matrix of bus bandwidths on @var{f}.
  1472. @end deftypefun
  1473. @node Profiling API
  1474. @section Profiling API
  1475. @deftypefun int starpu_profiling_status_set (int @var{status})
  1476. Thie function sets the profiling status. Profiling is activated by passing
  1477. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1478. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1479. resets all profiling measurements. When profiling is enabled, the
  1480. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1481. to a valid @code{struct starpu_task_profiling_info} structure containing
  1482. information about the execution of the task.
  1483. Negative return values indicate an error, otherwise the previous status is
  1484. returned.
  1485. @end deftypefun
  1486. @deftypefun int starpu_profiling_status_get (void)
  1487. Return the current profiling status or a negative value in case there was an error.
  1488. @end deftypefun
  1489. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1490. This function sets the ID used for profiling trace filename
  1491. @end deftypefun
  1492. @deftp {Data Type} {struct starpu_task_profiling_info}
  1493. This structure contains information about the execution of a task. It is
  1494. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1495. structure if profiling was enabled. The different fields are:
  1496. @table @asis
  1497. @item @code{struct timespec submit_time}
  1498. Date of task submission (relative to the initialization of StarPU).
  1499. @item @code{struct timespec push_start_time}
  1500. Time when the task was submitted to the scheduler.
  1501. @item @code{struct timespec push_end_time}
  1502. Time when the scheduler finished with the task submission.
  1503. @item @code{struct timespec pop_start_time}
  1504. Time when the scheduler started to be requested for a task, and eventually gave
  1505. that task.
  1506. @item @code{struct timespec pop_end_time}
  1507. Time when the scheduler finished providing the task for execution.
  1508. @item @code{struct timespec acquire_data_start_time}
  1509. Time when the worker started fetching input data.
  1510. @item @code{struct timespec acquire_data_end_time}
  1511. Time when the worker finished fetching input data.
  1512. @item @code{struct timespec start_time}
  1513. Date of task execution beginning (relative to the initialization of StarPU).
  1514. @item @code{struct timespec end_time}
  1515. Date of task execution termination (relative to the initialization of StarPU).
  1516. @item @code{struct timespec release_data_start_time}
  1517. Time when the worker started releasing data.
  1518. @item @code{struct timespec release_data_end_time}
  1519. Time when the worker finished releasing data.
  1520. @item @code{struct timespec callback_start_time}
  1521. Time when the worker started the application callback for the task.
  1522. @item @code{struct timespec callback_end_time}
  1523. Time when the worker finished the application callback for the task.
  1524. @item @code{workerid}
  1525. Identifier of the worker which has executed the task.
  1526. @item @code{uint64_t used_cycles}
  1527. Number of cycles used by the task, only available in the MoviSim
  1528. @item @code{uint64_t stall_cycles}
  1529. Number of cycles stalled within the task, only available in the MoviSim
  1530. @item @code{double power_consumed}
  1531. Power consumed by the task, only available in the MoviSim
  1532. @end table
  1533. @end deftp
  1534. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1535. This structure contains the profiling information associated to a
  1536. worker. The different fields are:
  1537. @table @asis
  1538. @item @code{struct timespec start_time}
  1539. Starting date for the reported profiling measurements.
  1540. @item @code{struct timespec total_time}
  1541. Duration of the profiling measurement interval.
  1542. @item @code{struct timespec executing_time}
  1543. Time spent by the worker to execute tasks during the profiling measurement interval.
  1544. @item @code{struct timespec sleeping_time}
  1545. Time spent idling by the worker during the profiling measurement interval.
  1546. @item @code{int executed_tasks}
  1547. Number of tasks executed by the worker during the profiling measurement interval.
  1548. @item @code{uint64_t used_cycles}
  1549. Number of cycles used by the worker, only available in the MoviSim
  1550. @item @code{uint64_t stall_cycles}
  1551. Number of cycles stalled within the worker, only available in the MoviSim
  1552. @item @code{double power_consumed}
  1553. Power consumed by the worker, only available in the MoviSim
  1554. @end table
  1555. @end deftp
  1556. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1557. Get the profiling info associated to the worker identified by @var{workerid},
  1558. and reset the profiling measurements. If the @var{worker_info} argument is
  1559. NULL, only reset the counters associated to worker @var{workerid}.
  1560. Upon successful completion, this function returns 0. Otherwise, a negative
  1561. value is returned.
  1562. @end deftypefun
  1563. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1564. The different fields are:
  1565. @table @asis
  1566. @item @code{struct timespec start_time}
  1567. Time of bus profiling startup.
  1568. @item @code{struct timespec total_time}
  1569. Total time of bus profiling.
  1570. @item @code{int long long transferred_bytes}
  1571. Number of bytes transferred during profiling.
  1572. @item @code{int transfer_count}
  1573. Number of transfers during profiling.
  1574. @end table
  1575. @end deftp
  1576. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1577. Get the profiling info associated to the worker designated by @var{workerid},
  1578. and reset the profiling measurements. If worker_info is NULL, only reset the
  1579. counters.
  1580. @end deftypefun
  1581. @deftypefun int starpu_bus_get_count (void)
  1582. Return the number of buses in the machine.
  1583. @end deftypefun
  1584. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1585. Return the identifier of the bus between @var{src} and @var{dst}
  1586. @end deftypefun
  1587. @deftypefun int starpu_bus_get_src (int @var{busid})
  1588. Return the source point of bus @var{busid}
  1589. @end deftypefun
  1590. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1591. Return the destination point of bus @var{busid}
  1592. @end deftypefun
  1593. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1594. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1595. @end deftypefun
  1596. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1597. Converts the given timespec @var{ts} into microseconds.
  1598. @end deftypefun
  1599. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1600. Displays statistics about the bus on stderr.
  1601. @end deftypefun
  1602. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1603. Displays statistics about the workers on stderr.
  1604. @end deftypefun
  1605. @node CUDA extensions
  1606. @section CUDA extensions
  1607. @defmac STARPU_USE_CUDA
  1608. This macro is defined when StarPU has been installed with CUDA
  1609. support. It should be used in your code to detect the availability of
  1610. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1611. @end defmac
  1612. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1613. This function gets the current worker's CUDA stream.
  1614. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1615. function is only provided for convenience so that programmers can easily use
  1616. asynchronous operations within codelets without having to create a stream by
  1617. hand. Note that the application is not forced to use the stream provided by
  1618. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1619. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1620. the likelihood of having all transfers overlapped.
  1621. @end deftypefun
  1622. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1623. This function returns a pointer to device properties for worker @var{workerid}
  1624. (assumed to be a CUDA worker).
  1625. @end deftypefun
  1626. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1627. Return the size of the global memory of CUDA device @var{devid}.
  1628. @end deftypefun
  1629. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1630. Report a CUDA error.
  1631. @end deftypefun
  1632. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1633. Calls starpu_cuda_report_error, passing the current function, file and line
  1634. position.
  1635. @end defmac
  1636. @deftypefun void starpu_helper_cublas_init (void)
  1637. This function initializes CUBLAS on every CUDA device.
  1638. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1639. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1640. controlled by StarPU. This call blocks until CUBLAS has been properly
  1641. initialized on every device.
  1642. @end deftypefun
  1643. @deftypefun void starpu_helper_cublas_shutdown (void)
  1644. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1645. @end deftypefun
  1646. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1647. Report a cublas error.
  1648. @end deftypefun
  1649. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1650. Calls starpu_cublas_report_error, passing the current function, file and line
  1651. position.
  1652. @end defmac
  1653. @node OpenCL extensions
  1654. @section OpenCL extensions
  1655. @menu
  1656. * Writing OpenCL kernels:: Writing OpenCL kernels
  1657. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1658. * Loading OpenCL kernels:: Loading OpenCL kernels
  1659. * OpenCL statistics:: Collecting statistics from OpenCL
  1660. * OpenCL utilities:: Utilities for OpenCL
  1661. @end menu
  1662. @defmac STARPU_USE_OPENCL
  1663. This macro is defined when StarPU has been installed with OpenCL
  1664. support. It should be used in your code to detect the availability of
  1665. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1666. @end defmac
  1667. @node Writing OpenCL kernels
  1668. @subsection Writing OpenCL kernels
  1669. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1670. Return the size of global device memory in bytes.
  1671. @end deftypefun
  1672. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1673. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1674. @end deftypefun
  1675. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1676. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1677. @end deftypefun
  1678. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1679. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1680. @end deftypefun
  1681. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1682. Return the context of the current worker.
  1683. @end deftypefun
  1684. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1685. Return the computation kernel command queue of the current worker.
  1686. @end deftypefun
  1687. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1688. Sets the arguments of a given kernel. The list of arguments must be given as
  1689. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1690. The last argument must be 0. Returns the number of arguments that were
  1691. successfully set. In case of failure, @var{err} is set to the error returned by
  1692. OpenCL.
  1693. @end deftypefun
  1694. @node Compiling OpenCL kernels
  1695. @subsection Compiling OpenCL kernels
  1696. Source codes for OpenCL kernels can be stored in a file or in a
  1697. string. StarPU provides functions to build the program executable for
  1698. each available OpenCL device as a @code{cl_program} object. This
  1699. program executable can then be loaded within a specific queue as
  1700. explained in the next section. These are only helpers, Applications
  1701. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1702. use (e.g. different programs on the different OpenCL devices, for
  1703. relocation purpose for instance).
  1704. @deftp {Data Type} {struct starpu_opencl_program}
  1705. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1706. @table @asis
  1707. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1708. Stores each program for each OpenCL device.
  1709. @end table
  1710. @end deftp
  1711. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1712. @anchor{starpu_opencl_load_opencl_from_file}
  1713. This function compiles an OpenCL source code stored in a file.
  1714. @end deftypefun
  1715. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1716. This function compiles an OpenCL source code stored in a string.
  1717. @end deftypefun
  1718. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1719. This function unloads an OpenCL compiled code.
  1720. @end deftypefun
  1721. @node Loading OpenCL kernels
  1722. @subsection Loading OpenCL kernels
  1723. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1724. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1725. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1726. @var{kernel_name}
  1727. @end deftypefun
  1728. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1729. Release the given @var{kernel}, to be called after kernel execution.
  1730. @end deftypefun
  1731. @node OpenCL statistics
  1732. @subsection OpenCL statistics
  1733. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1734. This function allows to collect statistics on a kernel execution.
  1735. After termination of the kernels, the OpenCL codelet should call this function
  1736. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1737. collect statistics about the kernel execution (used cycles, consumed power).
  1738. @end deftypefun
  1739. @node OpenCL utilities
  1740. @subsection OpenCL utilities
  1741. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1742. Given a valid error @var{status}, prints the corresponding error message on
  1743. stdout, along with the given function name @var{func}, the given filename
  1744. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1745. @end deftypefun
  1746. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1747. Call the function @code{starpu_opencl_display_error} with the given
  1748. error @var{status}, the current function name, current file and line
  1749. number, and a empty message.
  1750. @end defmac
  1751. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1752. Call the function @code{starpu_opencl_display_error} and abort.
  1753. @end deftypefun
  1754. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1755. Call the function @code{starpu_opencl_report_error} with the given
  1756. error @var{status}, with the current function name, current file and
  1757. line number, and a empty message.
  1758. @end defmac
  1759. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1760. Call the function @code{starpu_opencl_report_error} with the given
  1761. message and the given error @var{status}, with the current function
  1762. name, current file and line number.
  1763. @end defmac
  1764. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1765. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1766. valid combination of cl_mem_flags values.
  1767. @end deftypefun
  1768. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1769. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1770. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1771. @var{offset} is the offset, in bytes, in @var{buffer}.
  1772. @var{event} can be used to wait for this particular copy to complete. It can be
  1773. NULL.
  1774. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1775. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1776. was successful, or to 0 if event was NULL.
  1777. @end deftypefun
  1778. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1779. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1780. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1781. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1782. complete. It can be NULL.
  1783. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1784. otherwise.
  1785. @end deftypefun
  1786. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1787. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1788. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1789. @var{offset} is the offset, in bytes, in @var{buffer}.
  1790. @var{event} can be used to wait for this particular copy to complete. It can be
  1791. NULL.
  1792. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1793. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1794. was successful, or to 0 if event was NULL.
  1795. @end deftypefun
  1796. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1797. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1798. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1799. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1800. complete. It can be NULL.
  1801. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1802. otherwise.
  1803. @end deftypefun
  1804. @node Cell extensions
  1805. @section Cell extensions
  1806. nothing yet.
  1807. @node Miscellaneous helpers
  1808. @section Miscellaneous helpers
  1809. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1810. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1811. The @var{asynchronous} parameter indicates whether the function should
  1812. block or not. In the case of an asynchronous call, it is possible to
  1813. synchronize with the termination of this operation either by the means of
  1814. implicit dependencies (if enabled) or by calling
  1815. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1816. this callback function is executed after the handle has been copied, and it is
  1817. given the @var{callback_arg} pointer as argument.
  1818. @end deftypefun
  1819. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1820. This function executes the given function on a subset of workers.
  1821. When calling this method, the offloaded function specified by the first argument is
  1822. executed by every StarPU worker that may execute the function.
  1823. The second argument is passed to the offloaded function.
  1824. The last argument specifies on which types of processing units the function
  1825. should be executed. Similarly to the @var{where} field of the
  1826. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1827. should be executed on every CUDA device and every CPU by passing
  1828. @code{STARPU_CPU|STARPU_CUDA}.
  1829. This function blocks until the function has been executed on every appropriate
  1830. processing units, so that it may not be called from a callback function for
  1831. instance.
  1832. @end deftypefun