parallel_independent_heterogeneous_tasks.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016,2017 CNRS
  4. * Copyright (C) 2016 Université de Bordeaux
  5. * Copyright (C) 2016 Bérangère Subervie
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <stdbool.h>
  19. #include <starpu.h>
  20. #include "../helper.h"
  21. /* Run a series of independent tasks with heterogeneous execution time */
  22. #define TIME 0.010
  23. #ifdef STARPU_QUICK_CHECK
  24. #define TASK_COEFFICIENT 20
  25. #define MARGIN 0.20
  26. #else
  27. #define TASK_COEFFICIENT 100
  28. #define MARGIN 0.10
  29. #endif
  30. #define TIME_CUDA_COEFFICIENT 10
  31. #define TIME_OPENCL_COEFFICIENT 5
  32. #define SECONDS_SCALE_COEFFICIENT_TIMING_NOW 1000000
  33. void wait_CPU(void *descr[], void *_args)
  34. {
  35. (void)descr;
  36. (void)_args;
  37. starpu_sleep(TIME);
  38. }
  39. void wait_CUDA(void *descr[], void *_args)
  40. {
  41. (void)descr;
  42. (void)_args;
  43. starpu_sleep(TIME/TIME_CUDA_COEFFICIENT);
  44. }
  45. void wait_OPENCL(void *descr[], void *_args)
  46. {
  47. (void)descr;
  48. (void)_args;
  49. starpu_sleep(TIME/TIME_OPENCL_COEFFICIENT);
  50. }
  51. double cost_function(struct starpu_task *t, struct starpu_perfmodel_arch *a, unsigned i)
  52. {
  53. (void) t; (void) i;
  54. STARPU_ASSERT(a->ndevices == 1);
  55. if (a->devices[0].type == STARPU_CPU_WORKER)
  56. {
  57. STARPU_ASSERT(a->devices[0].ncores == 1);
  58. return TIME * 1000000;
  59. }
  60. else if (a->devices[0].type == STARPU_CUDA_WORKER)
  61. {
  62. return TIME/TIME_CUDA_COEFFICIENT * 1000000;
  63. }
  64. else if (a->devices[0].type == STARPU_OPENCL_WORKER)
  65. {
  66. return TIME/TIME_OPENCL_COEFFICIENT * 1000000;
  67. }
  68. STARPU_ASSERT(0);
  69. return 0.0;
  70. }
  71. static struct starpu_perfmodel perf_model =
  72. {
  73. .type = STARPU_PER_ARCH,
  74. .arch_cost_function = cost_function,
  75. };
  76. static struct starpu_codelet cl =
  77. {
  78. .cpu_funcs = { wait_CPU },
  79. .cuda_funcs = { wait_CUDA },
  80. .opencl_funcs = { wait_OPENCL },
  81. .cpu_funcs_name = { "wait_CPU" },
  82. .nbuffers = 0,
  83. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  84. .model = &perf_model,
  85. };
  86. int main(int argc, char *argv[])
  87. {
  88. int ret;
  89. ret = starpu_initialize(NULL, &argc, &argv);
  90. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  91. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  92. unsigned nb_tasks, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL, i;
  93. double begin_time, end_time, time_m, time_s, speed_up, expected_speed_up, percentage_expected_speed_up;
  94. bool check, check_sup;
  95. nb_workers_CPU = starpu_worker_get_count_by_type(STARPU_CPU_WORKER);
  96. nb_workers_CUDA = starpu_worker_get_count_by_type(STARPU_CUDA_WORKER);
  97. nb_workers_OPENCL = starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER);
  98. nb_tasks = (nb_workers_CPU + nb_workers_CUDA + nb_workers_OPENCL)*TASK_COEFFICIENT;
  99. begin_time = starpu_timing_now();
  100. /*execution des tasks*/
  101. for (i=0; i<nb_tasks; i++)
  102. {
  103. starpu_task_insert(&cl,0);
  104. }
  105. starpu_task_wait_for_all();
  106. end_time = starpu_timing_now();
  107. /*on determine si le temps mesure est satisfaisant ou pas*/
  108. time_m = (end_time - begin_time)/SECONDS_SCALE_COEFFICIENT_TIMING_NOW; //pour ramener en secondes
  109. time_s = nb_tasks * TIME;
  110. speed_up = time_s/time_m;
  111. expected_speed_up = nb_workers_CPU + TIME_CUDA_COEFFICIENT*nb_workers_CUDA + TIME_OPENCL_COEFFICIENT*nb_workers_OPENCL;
  112. percentage_expected_speed_up = 100 * (speed_up/expected_speed_up);
  113. check = speed_up >= (1 - MARGIN) * expected_speed_up;
  114. check_sup = speed_up <= (1 + MARGIN) * expected_speed_up;
  115. printf("measured time = %f seconds\nsequential time = %f seconds\nspeed up = %f\nnumber of workers CPU = %u\nnumber of workers CUDA = %u\nnumber of workers OPENCL = %u\nnumber of tasks = %u\nexpected speed up = %f\npercentage of expected speed up = %.2f%%\n", time_m, time_s, speed_up, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL, nb_tasks, expected_speed_up, percentage_expected_speed_up);
  116. starpu_shutdown();
  117. //test reussi ou test echoue
  118. if (check && check_sup)
  119. {
  120. return EXIT_SUCCESS;
  121. }
  122. else
  123. {
  124. return EXIT_FAILURE;
  125. }
  126. }