| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 | /* dstegr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dstegr_(char *jobz, char *range, integer *n, doublereal *	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 	integer *iu, doublereal *abstol, integer *m, doublereal *w, 	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset;    /* Local variables */    extern /* Subroutine */ int _starpu_dstemr_(char *, char *, integer *, doublereal 	    *, doublereal *, doublereal *, doublereal *, integer *, integer *, 	     integer *, doublereal *, doublereal *, integer *, integer *, 	    integer *, logical *, doublereal *, integer *, integer *, integer 	    *, integer *);    logical tryrac;/*  -- LAPACK computational routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEGR computes selected eigenvalues and, optionally, eigenvectors *//*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has *//*  a well defined set of pairwise different real eigenvalues, the corresponding *//*  real eigenvectors are pairwise orthogonal. *//*  The spectrum may be computed either completely or partially by specifying *//*  either an interval (VL,VU] or a range of indices IL:IU for the desired *//*  eigenvalues. *//*  DSTEGR is a compatability wrapper around the improved DSTEMR routine. *//*  See DSTEMR for further details. *//*  One important change is that the ABSTOL parameter no longer provides any *//*  benefit and hence is no longer used. *//*  Note : DSTEGR and DSTEMR work only on machines which follow *//*  IEEE-754 floating-point standard in their handling of infinities and *//*  NaNs.  Normal execution may create these exceptiona values and hence *//*  may abort due to a floating point exception in environments which *//*  do not conform to the IEEE-754 standard. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the N diagonal elements of the tridiagonal matrix *//*          T. On exit, D is overwritten. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the (N-1) subdiagonal elements of the tridiagonal *//*          matrix T in elements 1 to N-1 of E. E(N) need not be set on *//*          input, but is used internally as workspace. *//*          On exit, E is overwritten. *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  ABSTOL  (input) DOUBLE PRECISION *//*          Unused.  Was the absolute error tolerance for the *//*          eigenvalues/eigenvectors in previous versions. *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          The first M elements contain the selected eigenvalues in *//*          ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) *//*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z *//*          contain the orthonormal eigenvectors of the matrix T *//*          corresponding to the selected eigenvalues, with the i-th *//*          column of Z holding the eigenvector associated with W(i). *//*          If JOBZ = 'N', then Z is not referenced. *//*          Note: the user must ensure that at least max(1,M) columns are *//*          supplied in the array Z; if RANGE = 'V', the exact value of M *//*          is not known in advance and an upper bound must be used. *//*          Supplying N columns is always safe. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', then LDZ >= max(1,N). *//*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) *//*          The support of the eigenvectors in Z, i.e., the indices *//*          indicating the nonzero elements in Z. The i-th computed eigenvector *//*          is nonzero only in elements ISUPPZ( 2*i-1 ) through *//*          ISUPPZ( 2*i ). This is relevant in the case when the matrix *//*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the optimal *//*          (and minimal) LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,18*N) *//*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) *//*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) *//*          if only the eigenvalues are to be computed. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal size of the IWORK array, *//*          returns this value as the first entry of the IWORK array, and *//*          no error message related to LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          On exit, INFO *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = 1X, internal error in DLARRE, *//*                if INFO = 2X, internal error in DLARRV. *//*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is *//*                the nonzero error code returned by DLARRE or *//*                DLARRV, respectively. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Inderjit Dhillon, IBM Almaden, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, LBNL/NERSC, USA *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --d__;    --e;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --isuppz;    --work;    --iwork;    /* Function Body */    *info = 0;    tryrac = FALSE_;    _starpu_dstemr_(jobz, range, n, &d__[1], &e[1], vl, vu, il, iu, m, &w[1], &z__[	    z_offset], ldz, n, &isuppz[1], &tryrac, &work[1], lwork, &iwork[1], liwork, info);/*     End of DSTEGR */    return 0;} /* _starpu_dstegr_ */
 |