| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 | /* dlaqge.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlaqge_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, doublereal 	*colcnd, doublereal *amax, char *equed){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j;    doublereal cj, large, small;    extern doublereal _starpu_dlamch_(char *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQGE equilibrates a general M by N matrix A using the row and *//*  column scaling factors in the vectors R and C. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M by N matrix A. *//*          On exit, the equilibrated matrix.  See EQUED for the form of *//*          the equilibrated matrix. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(M,1). *//*  R       (input) DOUBLE PRECISION array, dimension (M) *//*          The row scale factors for A. *//*  C       (input) DOUBLE PRECISION array, dimension (N) *//*          The column scale factors for A. *//*  ROWCND  (input) DOUBLE PRECISION *//*          Ratio of the smallest R(i) to the largest R(i). *//*  COLCND  (input) DOUBLE PRECISION *//*          Ratio of the smallest C(i) to the largest C(i). *//*  AMAX    (input) DOUBLE PRECISION *//*          Absolute value of largest matrix entry. *//*  EQUED   (output) CHARACTER*1 *//*          Specifies the form of equilibration that was done. *//*          = 'N':  No equilibration *//*          = 'R':  Row equilibration, i.e., A has been premultiplied by *//*                  diag(R). *//*          = 'C':  Column equilibration, i.e., A has been postmultiplied *//*                  by diag(C). *//*          = 'B':  Both row and column equilibration, i.e., A has been *//*                  replaced by diag(R) * A * diag(C). *//*  Internal Parameters *//*  =================== *//*  THRESH is a threshold value used to decide if row or column scaling *//*  should be done based on the ratio of the row or column scaling *//*  factors.  If ROWCND < THRESH, row scaling is done, and if *//*  COLCND < THRESH, column scaling is done. *//*  LARGE and SMALL are threshold values used to decide if row scaling *//*  should be done based on the absolute size of the largest matrix *//*  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --r__;    --c__;    /* Function Body */    if (*m <= 0 || *n <= 0) {	*(unsigned char *)equed = 'N';	return 0;    }/*     Initialize LARGE and SMALL. */    small = _starpu_dlamch_("Safe minimum") / _starpu_dlamch_("Precision");    large = 1. / small;    if (*rowcnd >= .1 && *amax >= small && *amax <= large) {/*        No row scaling */	if (*colcnd >= .1) {/*           No column scaling */	    *(unsigned char *)equed = 'N';	} else {/*           Column scaling */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = c__[j];		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    a[i__ + j * a_dim1] = cj * a[i__ + j * a_dim1];/* L10: */		}/* L20: */	    }	    *(unsigned char *)equed = 'C';	}    } else if (*colcnd >= .1) {/*        Row scaling, no column scaling */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = *m;	    for (i__ = 1; i__ <= i__2; ++i__) {		a[i__ + j * a_dim1] = r__[i__] * a[i__ + j * a_dim1];/* L30: */	    }/* L40: */	}	*(unsigned char *)equed = 'R';    } else {/*        Row and column scaling */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    cj = c__[j];	    i__2 = *m;	    for (i__ = 1; i__ <= i__2; ++i__) {		a[i__ + j * a_dim1] = cj * r__[i__] * a[i__ + j * a_dim1];/* L50: */	    }/* L60: */	}	*(unsigned char *)equed = 'B';    }    return 0;/*     End of DLAQGE */} /* _starpu_dlaqge_ */
 |