310_data_management.doxy 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2017 CNRS
  4. * Copyright (C) 2009-2011,2014-2018 Université de Bordeaux
  5. * Copyright (C) 2011-2012 Inria
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*! \page DataManagement Data Management
  19. TODO: intro qui parle de coherency entre autres
  20. \section DataInterface Data Interface
  21. StarPU provides several data interfaces for programmers to describe the data layout of their application. There are predefined interfaces already available in StarPU. Users can define new data interfaces as explained in \ref DefiningANewDataInterface. All functions provided by StarPU are documented in \ref API_Data_Interfaces. You will find a short list below.
  22. \subsection VariableDataInterface Variable Data Interface
  23. A variable is a given size byte element, typically a scalar. Here an
  24. example of how to register a variable data to StarPU by using
  25. starpu_variable_data_register().
  26. \code{.c}
  27. float var = 42.0;
  28. starpu_data_handle_t var_handle;
  29. starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));
  30. \endcode
  31. \subsection VectorDataInterface Vector Data Interface
  32. A vector is a fixed number of elements of a given size. Here an
  33. example of how to register a vector data to StarPU by using
  34. starpu_vector_data_register().
  35. \code{.c}
  36. float vector[NX];
  37. starpu_data_handle_t vector_handle;
  38. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
  39. \endcode
  40. \subsection MatrixDataInterface Matrix Data Interface
  41. To register 2-D matrices with a potential padding, one can use the
  42. matrix data interface. Here an example of how to register a matrix
  43. data to StarPU by using starpu_matrix_data_register().
  44. \code{.c}
  45. float *matrix;
  46. starpu_data_handle_t matrix_handle;
  47. matrix = (float*)malloc(width * height * sizeof(float));
  48. starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height, sizeof(float));
  49. \endcode
  50. \subsection BlockDataInterface Block Data Interface
  51. To register 3-D blocks with potential paddings on Y and Z dimensions,
  52. one can use the block data interface. Here an example of how to
  53. register a block data to StarPU by using starpu_block_data_register().
  54. \code{.c}
  55. float *block;
  56. starpu_data_handle_t block_handle;
  57. block = (float*)malloc(nx*ny*nz*sizeof(float));
  58. starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz, sizeof(float));
  59. \endcode
  60. \subsection BCSRDataInterface BCSR Data Interface
  61. BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data
  62. can be registered to StarPU using the bcsr data interface. Here an
  63. example on how to do so by using starpu_bcsr_data_register().
  64. \code{.c}
  65. /*
  66. * We use the following matrix:
  67. *
  68. * +----------------+
  69. * | 0 1 0 0 |
  70. * | 2 3 0 0 |
  71. * | 4 5 8 9 |
  72. * | 6 7 10 11 |
  73. * +----------------+
  74. *
  75. * nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]
  76. * colind = [0, 0, 1]
  77. * rowptr = [0, 1, 3]
  78. * r = c = 2
  79. */
  80. /* Size of the blocks */
  81. int R = 2;
  82. int C = 2;
  83. int NROWS = 2;
  84. int NNZ_BLOCKS = 3; /* out of 4 */
  85. int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
  86. int nzval[NZVAL_SIZE] =
  87. {
  88. 0, 1, 2, 3, /* First block */
  89. 4, 5, 6, 7, /* Second block */
  90. 8, 9, 10, 11 /* Third block */
  91. };
  92. uint32_t colind[NNZ_BLOCKS] =
  93. {
  94. 0, /* block-column index for first block in nzval */
  95. 0, /* block-column index for second block in nzval */
  96. 1 /* block-column index for third block in nzval */
  97. };
  98. uint32_t rowptr[NROWS+1] =
  99. {
  100. 0, / * block-index in nzval of the first block of the first row. */
  101. 1, / * block-index in nzval of the first block of the second row. */
  102. NNZ_BLOCKS /* number of blocks, to allow an easier element's access for the kernels */
  103. };
  104. starpu_data_handle_t bcsr_handle;
  105. starpu_bcsr_data_register(&bcsr_handle,
  106. STARPU_MAIN_RAM,
  107. NNZ_BLOCKS,
  108. NROWS,
  109. (uintptr_t) nzval,
  110. colind,
  111. rowptr,
  112. 0, /* firstentry */
  113. R,
  114. C,
  115. sizeof(nzval[0]));
  116. \endcode
  117. StarPU provides an example on how to deal with such matrices in
  118. <c>examples/spmv</c>.
  119. \subsection CSRDataInterface CSR Data Interface
  120. TODO
  121. \section DataManagement Data Management
  122. When the application allocates data, whenever possible it should use
  123. the starpu_malloc() function, which will ask CUDA or OpenCL to make
  124. the allocation itself and pin the corresponding allocated memory, or to use the
  125. starpu_memory_pin() function to pin memory allocated by other ways, such as local arrays. This
  126. is needed to permit asynchronous data transfer, i.e. permit data
  127. transfer to overlap with computations. Otherwise, the trace will show
  128. that the <c>DriverCopyAsync</c> state takes a lot of time, this is
  129. because CUDA or OpenCL then reverts to synchronous transfers.
  130. By default, StarPU leaves replicates of data wherever they were used, in case they
  131. will be re-used by other tasks, thus saving the data transfer time. When some
  132. task modifies some data, all the other replicates are invalidated, and only the
  133. processing unit which ran that task will have a valid replicate of the data. If the application knows
  134. that this data will not be re-used by further tasks, it should advise StarPU to
  135. immediately replicate it to a desired list of memory nodes (given through a
  136. bitmask). This can be understood like the write-through mode of CPU caches.
  137. \code{.c}
  138. starpu_data_set_wt_mask(img_handle, 1<<0);
  139. \endcode
  140. will for instance request to always automatically transfer a replicate into the
  141. main memory (node <c>0</c>), as bit <c>0</c> of the write-through bitmask is being set.
  142. \code{.c}
  143. starpu_data_set_wt_mask(img_handle, ~0U);
  144. \endcode
  145. will request to always automatically broadcast the updated data to all memory
  146. nodes.
  147. Setting the write-through mask to <c>~0U</c> can also be useful to make sure all
  148. memory nodes always have a copy of the data, so that it is never evicted when
  149. memory gets scarse.
  150. Implicit data dependency computation can become expensive if a lot
  151. of tasks access the same piece of data. If no dependency is required
  152. on some piece of data (e.g. because it is only accessed in read-only
  153. mode, or because write accesses are actually commutative), use the
  154. function starpu_data_set_sequential_consistency_flag() to disable
  155. implicit dependencies on that data.
  156. In the same vein, accumulation of results in the same data can become a
  157. bottleneck. The use of the mode ::STARPU_REDUX permits to optimize such
  158. accumulation (see \ref DataReduction). To a lesser extent, the use of
  159. the flag ::STARPU_COMMUTE keeps the bottleneck (see \ref DataCommute), but at least permits
  160. the accumulation to happen in any order.
  161. Applications often need a data just for temporary results. In such a case,
  162. registration can be made without an initial value, for instance this produces a vector data:
  163. \code{.c}
  164. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  165. \endcode
  166. StarPU will then allocate the actual buffer only when it is actually needed,
  167. e.g. directly on the GPU without allocating in main memory.
  168. In the same vein, once the temporary results are not useful any more, the
  169. data should be thrown away. If the handle is not to be reused, it can be
  170. unregistered:
  171. \code{.c}
  172. starpu_data_unregister_submit(handle);
  173. \endcode
  174. actual unregistration will be done after all tasks working on the handle
  175. terminate.
  176. If the handle is to be reused, instead of unregistering it, it can simply be invalidated:
  177. \code{.c}
  178. starpu_data_invalidate_submit(handle);
  179. \endcode
  180. the buffers containing the current value will then be freed, and reallocated
  181. only when another task writes some value to the handle.
  182. \section DataPrefetch Data Prefetch
  183. The scheduling policies <c>heft</c>, <c>dmda</c> and <c>pheft</c>
  184. perform data prefetch (see \ref STARPU_PREFETCH):
  185. as soon as a scheduling decision is taken for a task, requests are issued to
  186. transfer its required data to the target processing unit, if needed, so that
  187. when the processing unit actually starts the task, its data will hopefully be
  188. already available and it will not have to wait for the transfer to finish.
  189. The application may want to perform some manual prefetching, for several reasons
  190. such as excluding initial data transfers from performance measurements, or
  191. setting up an initial statically-computed data distribution on the machine
  192. before submitting tasks, which will thus guide StarPU toward an initial task
  193. distribution (since StarPU will try to avoid further transfers).
  194. This can be achieved by giving the function starpu_data_prefetch_on_node() the
  195. handle and the desired target memory node. The
  196. starpu_data_idle_prefetch_on_node() variant can be used to issue the transfer
  197. only when the bus is idle.
  198. Conversely, one can advise StarPU that some data will not be useful in the
  199. close future by calling starpu_data_wont_use(). StarPU will then write its value
  200. back to its home node, and evict it from GPUs when room is needed.
  201. \section PartitioningData Partitioning Data
  202. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  203. \code{.c}
  204. #define NX 1048576
  205. #define PARTS 16
  206. int vector[NX];
  207. starpu_data_handle_t handle;
  208. /* Declare data to StarPU */
  209. starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)vector,
  210. NX, sizeof(vector[0]));
  211. /* Partition the vector in PARTS sub-vectors */
  212. struct starpu_data_filter f =
  213. {
  214. .filter_func = starpu_vector_filter_block,
  215. .nchildren = PARTS
  216. };
  217. starpu_data_partition(handle, &f);
  218. \endcode
  219. The task submission then uses the function starpu_data_get_sub_data()
  220. to retrieve the sub-handles to be passed as tasks parameters.
  221. \code{.c}
  222. /* Submit a task on each sub-vector */
  223. for (i=0; i<starpu_data_get_nb_children(handle); i++)
  224. {
  225. /* Get subdata number i (there is only 1 dimension) */
  226. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
  227. struct starpu_task *task = starpu_task_create();
  228. task->handles[0] = sub_handle;
  229. task->cl = &cl;
  230. task->synchronous = 1;
  231. task->cl_arg = &factor;
  232. task->cl_arg_size = sizeof(factor);
  233. starpu_task_submit(task);
  234. }
  235. \endcode
  236. Partitioning can be applied several times, see
  237. <c>examples/basic_examples/mult.c</c> and <c>examples/filters/</c>.
  238. Wherever the whole piece of data is already available, the partitioning will
  239. be done in-place, i.e. without allocating new buffers but just using pointers
  240. inside the existing copy. This is particularly important to be aware of when
  241. using OpenCL, where the kernel parameters are not pointers, but cl_mem handles. The
  242. kernel thus needs to be also passed the offset within the OpenCL buffer:
  243. \code{.c}
  244. void opencl_func(void *buffers[], void *cl_arg)
  245. {
  246. cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  247. unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
  248. ...
  249. clSetKernelArg(kernel, 0, sizeof(vector), &vector);
  250. clSetKernelArg(kernel, 1, sizeof(offset), &offset);
  251. ...
  252. }
  253. \endcode
  254. And the kernel has to shift from the pointer passed by the OpenCL driver:
  255. \code{.c}
  256. __kernel void opencl_kernel(__global int *vector, unsigned offset)
  257. {
  258. block = (__global void *)block + offset;
  259. ...
  260. }
  261. \endcode
  262. StarPU provides various interfaces and filters for matrices, vectors, etc.,
  263. but applications can also write their own data interfaces and filters, see
  264. <c>examples/interface</c> and <c>examples/filters/custom_mf</c> for an example,
  265. and see \ref DefiningANewDataInterface and \ref DefiningANewDataFilter
  266. for documentation.
  267. \section AsynchronousPartitioning Asynchronous Partitioning
  268. The partitioning functions described in the previous section are synchronous:
  269. starpu_data_partition() and starpu_data_unpartition() both wait for all the tasks
  270. currently working on the data. This can be a bottleneck for the application.
  271. An asynchronous API also exists, it works only on handles with sequential
  272. consistency. The principle is to first plan the partitioning, which returns
  273. data handles of the partition, which are not functional yet. When submitting
  274. tasks, one can mix using the handles of the partition, of the whole data. One
  275. can even partition recursively and mix using handles at different levels of the
  276. recursion. Of course, StarPU will have to introduce coherency synchronization.
  277. <c>fmultiple_submit_implicit</c> is a complete example using this technique.
  278. One can also look at <c>fmultiple_submit_readonly</c> which contains the
  279. explicit coherency synchronization which are automatically introduced by StarPU
  280. for <c>fmultiple_submit_implicit</c>.
  281. In short, we first register a matrix and plan the partitioning:
  282. \code{.c}
  283. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  284. struct starpu_data_filter f_vert =
  285. {
  286. .filter_func = starpu_matrix_filter_block,
  287. .nchildren = PARTS
  288. };
  289. starpu_data_partition_plan(handle, &f_vert, vert_handle);
  290. \endcode
  291. starpu_data_partition_plan() returns the handles for the partition in <c>vert_handle</c>.
  292. One can then submit tasks working on the main handle, and tasks working on
  293. <c>vert_handle</c> handles. Between using the main handle and <c>vert_handle</c>
  294. handles, StarPU will automatically call starpu_data_partition_submit and
  295. starpu_data_unpartition_submit.
  296. All this code is asynchronous, just submitting which tasks, partitioning and
  297. unpartitioning will be done at runtime.
  298. Planning several partitioning of the same data is also possible, StarPU will
  299. unpartition and repartition as needed when mixing accesses of different
  300. partitions. If data access is done in read-only mode, StarPU will allow the
  301. different partitioning to coexist. As soon as a data is accessed in read-write
  302. mode, StarPU will automatically unpartition everything and activate only the
  303. partitioning leading to the data being written to.
  304. For instance, for a stencil application, one can split a subdomain into
  305. its interior and halos, and then just submit a task updating the whole
  306. subdomain, then submit MPI sends/receives to update the halos, then submit
  307. again a task updating the whole subdomain, etc. and StarPU will automatically
  308. partition/unpartition each time.
  309. \section ManualPartitioning Manual Partitioning
  310. One can also handle partitioning by hand, by registering several views on the
  311. same piece of data. The idea is then to manage the coherency of the various
  312. views through the common buffer in the main memory.
  313. <c>fmultiple_manual</c> is a complete example using this technique.
  314. In short, we first register the same matrix several times:
  315. \code{.c}
  316. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  317. for (i = 0; i < PARTS; i++)
  318. starpu_matrix_data_register(&vert_handle[i], STARPU_MAIN_RAM, (uintptr_t)&matrix[0][i*(NX/PARTS)], NX, NX/PARTS, NY, sizeof(matrix[0][0]));
  319. \endcode
  320. Since StarPU is not aware that the two handles are actually pointing to the same
  321. data, we have a danger of inadvertently submitting tasks to both views, which
  322. will bring a mess since StarPU will not guarantee any coherency between the two
  323. views. To make sure we don't do this, we invalidate the view that we will not
  324. use:
  325. \code{.c}
  326. for (i = 0; i < PARTS; i++)
  327. starpu_data_invalidate(vert_handle[i]);
  328. \endcode
  329. Then we can safely work on <c>handle</c>.
  330. When we want to switch to the vertical slice view, all we need to do is bring
  331. coherency between them by running an empty task on the home node of the data:
  332. \code{.c}
  333. void empty(void *buffers[], void *cl_arg)
  334. { }
  335. struct starpu_codelet cl_switch =
  336. {
  337. .cpu_funcs = {empty},
  338. .nbuffers = STARPU_VARIABLE_NBUFFERS,
  339. };
  340. ret = starpu_task_insert(&cl_switch, STARPU_RW, handle,
  341. STARPU_W, vert_handle[0],
  342. STARPU_W, vert_handle[1],
  343. 0);
  344. \endcode
  345. The execution of the <c>switch</c> task will get back the matrix data into the
  346. main memory, and thus the vertical slices will get the updated value there.
  347. Again, we prefer to make sure that we don't accidentally access the matrix through the whole-matrix handle:
  348. \code{.c}
  349. starpu_data_invalidate_submit(handle);
  350. \endcode
  351. And now we can start using vertical slices, etc.
  352. \section DefiningANewDataFilter Defining A New Data Filter
  353. StarPU provides a series of predefined filters in API_Data_Partition, but
  354. additional filters can be defined by the application. The principle is that the
  355. filter function just fills the memory location of the i-th subpart of a data.
  356. Examples are provided in <c>src/datawizard/interfaces/*_filters.c</c>,
  357. and see \ref starpu_data_filter::filter_func for the details.
  358. \section DataReduction Data Reduction
  359. In various cases, some piece of data is used to accumulate intermediate
  360. results. For instances, the dot product of a vector, maximum/minimum finding,
  361. the histogram of a photograph, etc. When these results are produced along the
  362. whole machine, it would not be efficient to accumulate them in only one place,
  363. incurring data transmission each and access concurrency.
  364. StarPU provides a mode ::STARPU_REDUX, which permits to optimize
  365. that case: it will allocate a buffer on each memory node, and accumulate
  366. intermediate results there. When the data is eventually accessed in the normal
  367. mode ::STARPU_R, StarPU will collect the intermediate results in just one
  368. buffer.
  369. For this to work, the user has to use the function
  370. starpu_data_set_reduction_methods() to declare how to initialize these
  371. buffers, and how to assemble partial results.
  372. For instance, <c>cg</c> uses that to optimize its dot product: it first defines
  373. the codelets for initialization and reduction:
  374. \code{.c}
  375. struct starpu_codelet bzero_variable_cl =
  376. {
  377. .cpu_funcs = { bzero_variable_cpu },
  378. .cpu_funcs_name = { "bzero_variable_cpu" },
  379. .cuda_funcs = { bzero_variable_cuda },
  380. .nbuffers = 1,
  381. }
  382. static void accumulate_variable_cpu(void *descr[], void *cl_arg)
  383. {
  384. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  385. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  386. *v_dst = *v_dst + *v_src;
  387. }
  388. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  389. {
  390. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  391. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  392. cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
  393. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  394. }
  395. struct starpu_codelet accumulate_variable_cl =
  396. {
  397. .cpu_funcs = { accumulate_variable_cpu },
  398. .cpu_funcs_name = { "accumulate_variable_cpu" },
  399. .cuda_funcs = { accumulate_variable_cuda },
  400. .nbuffers = 1,
  401. }
  402. \endcode
  403. and attaches them as reduction methods for its handle <c>dtq</c>:
  404. \code{.c}
  405. starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
  406. starpu_data_set_reduction_methods(dtq_handle,
  407. &accumulate_variable_cl, &bzero_variable_cl);
  408. \endcode
  409. and <c>dtq_handle</c> can now be used in mode ::STARPU_REDUX for the
  410. dot products with partitioned vectors:
  411. \code{.c}
  412. for (b = 0; b < nblocks; b++)
  413. starpu_task_insert(&dot_kernel_cl,
  414. STARPU_REDUX, dtq_handle,
  415. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  416. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  417. 0);
  418. \endcode
  419. During registration, we have here provided <c>NULL</c>, i.e. there is
  420. no initial value to be taken into account during reduction. StarPU
  421. will thus only take into account the contributions from the tasks
  422. <c>dot_kernel_cl</c>. Also, it will not allocate any memory for
  423. <c>dtq_handle</c> before tasks <c>dot_kernel_cl</c> are ready to run.
  424. If another dot product has to be performed, one could unregister
  425. <c>dtq_handle</c>, and re-register it. But one can also call
  426. starpu_data_invalidate_submit() with the parameter <c>dtq_handle</c>,
  427. which will clear all data from the handle, thus resetting it back to
  428. the initial status <c>register(NULL)</c>.
  429. The example <c>cg</c> also uses reduction for the blocked gemv kernel,
  430. leading to yet more relaxed dependencies and more parallelism.
  431. ::STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI
  432. case. That will however not produce any MPI communication, but just pass
  433. ::STARPU_REDUX to the underlying starpu_task_insert(). It is up to the
  434. application to call starpu_mpi_redux_data(), which posts tasks that will
  435. reduce the partial results among MPI nodes into the MPI node which owns the
  436. data. For instance, some hypothetical application which collects partial results
  437. into data <c>res</c>, then uses it for other computation, before looping again
  438. with a new reduction:
  439. \code{.c}
  440. for (i = 0; i < 100; i++)
  441. {
  442. starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
  443. starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A,
  444. STARPU_R, B, STARPU_REDUX, res, 0);
  445. starpu_mpi_redux_data(MPI_COMM_WORLD, res);
  446. starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R, res, 0);
  447. }
  448. \endcode
  449. \section DataCommute Commute Data Access
  450. By default, the implicit dependencies computed from data access use the
  451. sequential semantic. Notably, write accesses are always serialized in the order
  452. of submission. In some applicative cases, the write contributions can actually
  453. be performed in any order without affecting the eventual result. In that case
  454. it is useful to drop the strictly sequential semantic, to improve parallelism
  455. by allowing StarPU to reorder the write accesses. This can be done by using
  456. the ::STARPU_COMMUTE data access flag. Accesses without this flag will however
  457. properly be serialized against accesses with this flag. For instance:
  458. \code{.c}
  459. starpu_task_insert(&cl1,
  460. STARPU_R, h,
  461. STARPU_RW, handle,
  462. 0);
  463. starpu_task_insert(&cl2,
  464. STARPU_R, handle1,
  465. STARPU_RW|STARPU_COMMUTE, handle,
  466. 0);
  467. starpu_task_insert(&cl2,
  468. STARPU_R, handle2,
  469. STARPU_RW|STARPU_COMMUTE, handle,
  470. 0);
  471. starpu_task_insert(&cl3,
  472. STARPU_R, g,
  473. STARPU_RW, handle,
  474. 0);
  475. \endcode
  476. The two tasks running <c>cl2</c> will be able to commute: depending on whether the
  477. value of <c>handle1</c> or <c>handle2</c> becomes available first, the corresponding task
  478. running <c>cl2</c> will start first. The task running <c>cl1</c> will however always be run
  479. before them, and the task running <c>cl3</c> will always be run after them.
  480. If a lot of tasks use the commute access on the same set of data and a lot of
  481. them are ready at the same time, it may become interesting to use an arbiter,
  482. see \ref ConcurrentDataAccess.
  483. \section ConcurrentDataAccess Concurrent Data Accesses
  484. When several tasks are ready and will work on several data, StarPU is faced with
  485. the classical Dining Philosophers problem, and has to determine the order in
  486. which it will run the tasks.
  487. Data accesses usually use sequential ordering, so data accesses are usually
  488. already serialized, and thus by default StarPU uses the Dijkstra solution which
  489. scales very well in terms of overhead: tasks will just acquire data one by one
  490. by data handle pointer value order.
  491. When sequential ordering is disabled or the ::STARPU_COMMUTE flag is used, there
  492. may be a lot of concurrent accesses to the same data, and the Dijkstra solution
  493. gets only poor parallelism, typically in some pathological cases which do happen
  494. in various applications. In that case, one can use a data access arbiter, which
  495. implements the classical centralized solution for the Dining Philosophers
  496. problem. This is more expensive in terms of overhead since it is centralized,
  497. but it opportunistically gets a lot of parallelism. The centralization can also
  498. be avoided by using several arbiters, thus separating sets of data for which
  499. arbitration will be done. If a task accesses data from different arbiters, it
  500. will acquire them arbiter by arbiter, in arbiter pointer value order.
  501. See the <c>tests/datawizard/test_arbiter.cpp</c> example.
  502. Arbiters however do not support the ::STARPU_REDUX flag yet.
  503. \section TemporaryBuffers Temporary Buffers
  504. There are two kinds of temporary buffers: temporary data which just pass results
  505. from a task to another, and scratch data which are needed only internally by
  506. tasks.
  507. \subsection TemporaryData Temporary Data
  508. Data can sometimes be entirely produced by a task, and entirely consumed by
  509. another task, without the need for other parts of the application to access
  510. it. In such case, registration can be done without prior allocation, by using
  511. the special memory node number <c>-1</c>, and passing a zero pointer. StarPU will
  512. actually allocate memory only when the task creating the content gets scheduled,
  513. and destroy it on unregistration.
  514. In addition to that, it can be tedious for the application to have to unregister
  515. the data, since it will not use its content anyway. The unregistration can be
  516. done lazily by using the function starpu_data_unregister_submit(),
  517. which will record that no more tasks accessing the handle will be submitted, so
  518. that it can be freed as soon as the last task accessing it is over.
  519. The following code examplifies both points: it registers the temporary
  520. data, submits three tasks accessing it, and records the data for automatic
  521. unregistration.
  522. \code{.c}
  523. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  524. starpu_task_insert(&produce_data, STARPU_W, handle, 0);
  525. starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
  526. starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W, result_handle, 0);
  527. starpu_data_unregister_submit(handle);
  528. \endcode
  529. The application may also want to see the temporary data initialized
  530. on the fly before being used by the task. This can be done by using
  531. starpu_data_set_reduction_methods() to set an initialization codelet (no redux
  532. codelet is needed).
  533. \subsection ScratchData Scratch Data
  534. Some kernels sometimes need temporary data to achieve the computations, i.e. a
  535. workspace. The application could allocate it at the start of the codelet
  536. function, and free it at the end, but that would be costly. It could also
  537. allocate one buffer per worker (similarly to \ref HowToInitializeAComputationLibraryOnceForEachWorker),
  538. but that would
  539. make them systematic and permanent. A more optimized way is to use
  540. the data access mode ::STARPU_SCRATCH, as examplified below, which
  541. provides per-worker buffers without content consistency. The buffer is
  542. registered only once, using memory node <c>-1</c>, i.e. the application didn't allocate
  543. memory for it, and StarPU will allocate it on demand at task execution.
  544. \code{.c}
  545. starpu_vector_data_register(&workspace, -1, 0, sizeof(float));
  546. for (i = 0; i < N; i++)
  547. starpu_task_insert(&compute, STARPU_R, input[i],
  548. STARPU_SCRATCH, workspace, STARPU_W, output[i], 0);
  549. \endcode
  550. StarPU will make sure that the buffer is allocated before executing the task,
  551. and make this allocation per-worker: for CPU workers, notably, each worker has
  552. its own buffer. This means that each task submitted above will actually have its
  553. own workspace, which will actually be the same for all tasks running one after
  554. the other on the same worker. Also, if for instance memory becomes scarce,
  555. StarPU will notice that it can free such buffers easily, since the content does
  556. not matter.
  557. The example <c>examples/pi</c> uses scratches for some temporary buffer.
  558. \section TheMultiformatInterface The Multiformat Interface
  559. It may be interesting to represent the same piece of data using two different
  560. data structures: one that would only be used on CPUs, and one that would only
  561. be used on GPUs. This can be done by using the multiformat interface. StarPU
  562. will be able to convert data from one data structure to the other when needed.
  563. Note that the scheduler <c>dmda</c> is the only one optimized for this
  564. interface. The user must provide StarPU with conversion codelets:
  565. \snippet multiformat.c To be included. You should update doxygen if you see this text.
  566. Kernels can be written almost as for any other interface. Note that
  567. ::STARPU_MULTIFORMAT_GET_CPU_PTR shall only be used for CPU kernels. CUDA kernels
  568. must use ::STARPU_MULTIFORMAT_GET_CUDA_PTR, and OpenCL kernels must use
  569. ::STARPU_MULTIFORMAT_GET_OPENCL_PTR. ::STARPU_MULTIFORMAT_GET_NX may
  570. be used in any kind of kernel.
  571. \code{.c}
  572. static void
  573. multiformat_scal_cpu_func(void *buffers[], void *args)
  574. {
  575. struct point *aos;
  576. unsigned int n;
  577. aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
  578. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  579. ...
  580. }
  581. extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
  582. {
  583. unsigned int n;
  584. struct struct_of_arrays *soa;
  585. soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
  586. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  587. ...
  588. }
  589. \endcode
  590. A full example may be found in <c>examples/basic_examples/multiformat.c</c>.
  591. \section DefiningANewDataInterface Defining A New Data Interface
  592. Let's define a new data interface to manage complex numbers.
  593. \code{.c}
  594. /* interface for complex numbers */
  595. struct starpu_complex_interface
  596. {
  597. double *real;
  598. double *imaginary;
  599. int nx;
  600. };
  601. \endcode
  602. Registering such a data to StarPU is easily done using the function
  603. starpu_data_register(). The last
  604. parameter of the function, <c>interface_complex_ops</c>, will be
  605. described below.
  606. \code{.c}
  607. void starpu_complex_data_register(starpu_data_handle_t *handle,
  608. unsigned home_node, double *real, double *imaginary, int nx)
  609. {
  610. struct starpu_complex_interface complex =
  611. {
  612. .real = real,
  613. .imaginary = imaginary,
  614. .nx = nx
  615. };
  616. if (interface_complex_ops.interfaceid == STARPU_UNKNOWN_INTERFACE_ID)
  617. {
  618. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  619. }
  620. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  621. }
  622. \endcode
  623. Different operations need to be defined for a data interface through
  624. the type starpu_data_interface_ops. We only define here the basic
  625. operations needed to run simple applications. The source code for the
  626. different functions can be found in the file
  627. <c>examples/interface/complex_interface.c</c>, the details of the hooks to be
  628. provided are documented \ref starpu_data_interface_ops .
  629. \code{.c}
  630. static struct starpu_data_interface_ops interface_complex_ops =
  631. {
  632. .register_data_handle = complex_register_data_handle,
  633. .allocate_data_on_node = complex_allocate_data_on_node,
  634. .copy_methods = &complex_copy_methods,
  635. .get_size = complex_get_size,
  636. .footprint = complex_footprint,
  637. .interfaceid = STARPU_UNKNOWN_INTERFACE_ID,
  638. .interface_size = sizeof(struct starpu_complex_interface),
  639. };
  640. \endcode
  641. Functions need to be defined to access the different fields of the
  642. complex interface from a StarPU data handle.
  643. \code{.c}
  644. double *starpu_complex_get_real(starpu_data_handle_t handle)
  645. {
  646. struct starpu_complex_interface *complex_interface =
  647. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);
  648. return complex_interface->real;
  649. }
  650. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  651. int starpu_complex_get_nx(starpu_data_handle_t handle);
  652. \endcode
  653. Similar functions need to be defined to access the different fields of the
  654. complex interface from a <c>void *</c> pointer to be used within codelet
  655. implemetations.
  656. \snippet complex.c To be included. You should update doxygen if you see this text.
  657. Complex data interfaces can then be registered to StarPU.
  658. \code{.c}
  659. double real = 45.0;
  660. double imaginary = 12.0;
  661. starpu_complex_data_register(&handle1, STARPU_MAIN_RAM, &real, &imaginary, 1);
  662. starpu_task_insert(&cl_display, STARPU_R, handle1, 0);
  663. \endcode
  664. and used by codelets.
  665. \code{.c}
  666. void display_complex_codelet(void *descr[], void *_args)
  667. {
  668. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  669. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  670. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  671. int i;
  672. for(i=0 ; i<nx ; i++)
  673. {
  674. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  675. }
  676. }
  677. \endcode
  678. The whole code for this complex data interface is available in the
  679. directory <c>examples/interface/</c>.
  680. \section SpecifyingATargetNode Specifying A Target Node For Task Data
  681. When executing a task on a GPU for instance, StarPU would normally copy all the
  682. needed data for the tasks on the embedded memory of the GPU. It may however
  683. happen that the task kernel would rather have some of the datas kept in the
  684. main memory instead of copied in the GPU, a pivoting vector for instance.
  685. This can be achieved by setting the starpu_codelet::specific_nodes flag to
  686. <c>1</c>, and then fill the starpu_codelet::nodes array (or starpu_codelet::dyn_nodes when
  687. starpu_codelet::nbuffers is greater than \ref STARPU_NMAXBUFS) with the node numbers
  688. where data should be copied to, or <c>-1</c> to let StarPU copy it to the memory node
  689. where the task will be executed. For instance, with the following codelet:
  690. \code{.c}
  691. struct starpu_codelet cl =
  692. {
  693. .cuda_funcs = { kernel },
  694. .nbuffers = 2,
  695. .modes = {STARPU_RW, STARPU_RW},
  696. .specific_nodes = 1,
  697. .nodes = {STARPU_MAIN_RAM, -1},
  698. };
  699. \endcode
  700. the first data of the task will be kept in the main memory, while the second
  701. data will be copied to the CUDA GPU as usual. A working example is available in
  702. <c>tests/datawizard/specific_node.c</c>
  703. */