| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 | /* dtpsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dtpsv_(char *uplo, char *trans, char *diag, integer *n, 	doublereal *ap, doublereal *x, integer *incx){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    integer i__, j, k, kk, ix, jx, kx, info;    doublereal temp;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    logical nounit;/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTPSV  solves one of the systems of equations *//*     A*x = b,   or   A'*x = b, *//*  where b and x are n element vectors and A is an n by n unit, or *//*  non-unit, upper or lower triangular matrix, supplied in packed form. *//*  No test for singularity or near-singularity is included in this *//*  routine. Such tests must be performed before calling this routine. *//*  Arguments *//*  ========== *//*  UPLO   - CHARACTER*1. *//*           On entry, UPLO specifies whether the matrix is an upper or *//*           lower triangular matrix as follows: *//*              UPLO = 'U' or 'u'   A is an upper triangular matrix. *//*              UPLO = 'L' or 'l'   A is a lower triangular matrix. *//*           Unchanged on exit. *//*  TRANS  - CHARACTER*1. *//*           On entry, TRANS specifies the equations to be solved as *//*           follows: *//*              TRANS = 'N' or 'n'   A*x = b. *//*              TRANS = 'T' or 't'   A'*x = b. *//*              TRANS = 'C' or 'c'   A'*x = b. *//*           Unchanged on exit. *//*  DIAG   - CHARACTER*1. *//*           On entry, DIAG specifies whether or not A is unit *//*           triangular as follows: *//*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. *//*              DIAG = 'N' or 'n'   A is not assumed to be unit *//*                                  triangular. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the order of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  AP     - DOUBLE PRECISION array of DIMENSION at least *//*           ( ( n*( n + 1 ) )/2 ). *//*           Before entry with  UPLO = 'U' or 'u', the array AP must *//*           contain the upper triangular matrix packed sequentially, *//*           column by column, so that AP( 1 ) contains a( 1, 1 ), *//*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) *//*           respectively, and so on. *//*           Before entry with UPLO = 'L' or 'l', the array AP must *//*           contain the lower triangular matrix packed sequentially, *//*           column by column, so that AP( 1 ) contains a( 1, 1 ), *//*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) *//*           respectively, and so on. *//*           Note that when  DIAG = 'U' or 'u', the diagonal elements of *//*           A are not referenced, but are assumed to be unity. *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ). *//*           Before entry, the incremented array X must contain the n *//*           element right-hand side vector b. On exit, X is overwritten *//*           with the solution vector x. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    --x;    --ap;    /* Function Body */    info = 0;    if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {	info = 1;    } else if (! _starpu_lsame_(trans, "N") && ! _starpu_lsame_(trans, 	    "T") && ! _starpu_lsame_(trans, "C")) {	info = 2;    } else if (! _starpu_lsame_(diag, "U") && ! _starpu_lsame_(diag, 	    "N")) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*incx == 0) {	info = 7;    }    if (info != 0) {	_starpu_xerbla_("DTPSV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }    nounit = _starpu_lsame_(diag, "N");/*     Set up the start point in X if the increment is not unity. This *//*     will be  ( N - 1 )*INCX  too small for descending loops. */    if (*incx <= 0) {	kx = 1 - (*n - 1) * *incx;    } else if (*incx != 1) {	kx = 1;    }/*     Start the operations. In this version the elements of AP are *//*     accessed sequentially with one pass through AP. */    if (_starpu_lsame_(trans, "N")) {/*        Form  x := inv( A )*x. */	if (_starpu_lsame_(uplo, "U")) {	    kk = *n * (*n + 1) / 2;	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    if (x[j] != 0.) {			if (nounit) {			    x[j] /= ap[kk];			}			temp = x[j];			k = kk - 1;			for (i__ = j - 1; i__ >= 1; --i__) {			    x[i__] -= temp * ap[k];			    --k;/* L10: */			}		    }		    kk -= j;/* L20: */		}	    } else {		jx = kx + (*n - 1) * *incx;		for (j = *n; j >= 1; --j) {		    if (x[jx] != 0.) {			if (nounit) {			    x[jx] /= ap[kk];			}			temp = x[jx];			ix = jx;			i__1 = kk - j + 1;			for (k = kk - 1; k >= i__1; --k) {			    ix -= *incx;			    x[ix] -= temp * ap[k];/* L30: */			}		    }		    jx -= *incx;		    kk -= j;/* L40: */		}	    }	} else {	    kk = 1;	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (x[j] != 0.) {			if (nounit) {			    x[j] /= ap[kk];			}			temp = x[j];			k = kk + 1;			i__2 = *n;			for (i__ = j + 1; i__ <= i__2; ++i__) {			    x[i__] -= temp * ap[k];			    ++k;/* L50: */			}		    }		    kk += *n - j + 1;/* L60: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (x[jx] != 0.) {			if (nounit) {			    x[jx] /= ap[kk];			}			temp = x[jx];			ix = jx;			i__2 = kk + *n - j;			for (k = kk + 1; k <= i__2; ++k) {			    ix += *incx;			    x[ix] -= temp * ap[k];/* L70: */			}		    }		    jx += *incx;		    kk += *n - j + 1;/* L80: */		}	    }	}    } else {/*        Form  x := inv( A' )*x. */	if (_starpu_lsame_(uplo, "U")) {	    kk = 1;	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    temp = x[j];		    k = kk;		    i__2 = j - 1;		    for (i__ = 1; i__ <= i__2; ++i__) {			temp -= ap[k] * x[i__];			++k;/* L90: */		    }		    if (nounit) {			temp /= ap[kk + j - 1];		    }		    x[j] = temp;		    kk += j;/* L100: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    temp = x[jx];		    ix = kx;		    i__2 = kk + j - 2;		    for (k = kk; k <= i__2; ++k) {			temp -= ap[k] * x[ix];			ix += *incx;/* L110: */		    }		    if (nounit) {			temp /= ap[kk + j - 1];		    }		    x[jx] = temp;		    jx += *incx;		    kk += j;/* L120: */		}	    }	} else {	    kk = *n * (*n + 1) / 2;	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    temp = x[j];		    k = kk;		    i__1 = j + 1;		    for (i__ = *n; i__ >= i__1; --i__) {			temp -= ap[k] * x[i__];			--k;/* L130: */		    }		    if (nounit) {			temp /= ap[kk - *n + j];		    }		    x[j] = temp;		    kk -= *n - j + 1;/* L140: */		}	    } else {		kx += (*n - 1) * *incx;		jx = kx;		for (j = *n; j >= 1; --j) {		    temp = x[jx];		    ix = kx;		    i__1 = kk - (*n - (j + 1));		    for (k = kk; k >= i__1; --k) {			temp -= ap[k] * x[ix];			ix -= *incx;/* L150: */		    }		    if (nounit) {			temp /= ap[kk - *n + j];		    }		    x[jx] = temp;		    jx -= *incx;		    kk -= *n - j + 1;/* L160: */		}	    }	}    }    return 0;/*     End of DTPSV . */} /* _starpu_dtpsv_ */
 |