| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 | /* dsbmv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dsbmv_(char *uplo, integer *n, integer *k, doublereal *	alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, 	doublereal *beta, doublereal *y, integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j, l, ix, iy, jx, jy, kx, ky, info;    doublereal temp1, temp2;    extern logical _starpu_lsame_(char *, char *);    integer kplus1;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSBMV  performs the matrix-vector  operation *//*     y := alpha*A*x + beta*y, *//*  where alpha and beta are scalars, x and y are n element vectors and *//*  A is an n by n symmetric band matrix, with k super-diagonals. *//*  Arguments *//*  ========== *//*  UPLO   - CHARACTER*1. *//*           On entry, UPLO specifies whether the upper or lower *//*           triangular part of the band matrix A is being supplied as *//*           follows: *//*              UPLO = 'U' or 'u'   The upper triangular part of A is *//*                                  being supplied. *//*              UPLO = 'L' or 'l'   The lower triangular part of A is *//*                                  being supplied. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the order of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  K      - INTEGER. *//*           On entry, K specifies the number of super-diagonals of the *//*           matrix A. K must satisfy  0 .le. K. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). *//*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) *//*           by n part of the array A must contain the upper triangular *//*           band part of the symmetric matrix, supplied column by *//*           column, with the leading diagonal of the matrix in row *//*           ( k + 1 ) of the array, the first super-diagonal starting at *//*           position 2 in row k, and so on. The top left k by k triangle *//*           of the array A is not referenced. *//*           The following program segment will transfer the upper *//*           triangular part of a symmetric band matrix from conventional *//*           full matrix storage to band storage: *//*                 DO 20, J = 1, N *//*                    M = K + 1 - J *//*                    DO 10, I = MAX( 1, J - K ), J *//*                       A( M + I, J ) = matrix( I, J ) *//*              10    CONTINUE *//*              20 CONTINUE *//*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) *//*           by n part of the array A must contain the lower triangular *//*           band part of the symmetric matrix, supplied column by *//*           column, with the leading diagonal of the matrix in row 1 of *//*           the array, the first sub-diagonal starting at position 1 in *//*           row 2, and so on. The bottom right k by k triangle of the *//*           array A is not referenced. *//*           The following program segment will transfer the lower *//*           triangular part of a symmetric band matrix from conventional *//*           full matrix storage to band storage: *//*                 DO 20, J = 1, N *//*                    M = 1 - J *//*                    DO 10, I = J, MIN( N, J + K ) *//*                       A( M + I, J ) = matrix( I, J ) *//*              10    CONTINUE *//*              20 CONTINUE *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           ( k + 1 ). *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of DIMENSION at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ). *//*           Before entry, the incremented array X must contain the *//*           vector x. *//*           Unchanged on exit. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION. *//*           On entry, BETA specifies the scalar beta. *//*           Unchanged on exit. *//*  Y      - DOUBLE PRECISION array of DIMENSION at least *//*           ( 1 + ( n - 1 )*abs( INCY ) ). *//*           Before entry, the incremented array Y must contain the *//*           vector y. On exit, Y is overwritten by the updated vector y. *//*  INCY   - INTEGER. *//*           On entry, INCY specifies the increment for the elements of *//*           Y. INCY must not be zero. *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --x;    --y;    /* Function Body */    info = 0;    if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*k < 0) {	info = 3;    } else if (*lda < *k + 1) {	info = 6;    } else if (*incx == 0) {	info = 8;    } else if (*incy == 0) {	info = 11;    }    if (info != 0) {	_starpu_xerbla_("DSBMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || *alpha == 0. && *beta == 1.) {	return 0;    }/*     Set up the start points in  X  and  Y. */    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (*n - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (*n - 1) * *incy;    }/*     Start the operations. In this version the elements of the array A *//*     are accessed sequentially with one pass through A. *//*     First form  y := beta*y. */    if (*beta != 1.) {	if (*incy == 1) {	    if (*beta == 0.) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[i__] = 0.;/* L10: */		}	    } else {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[i__] = *beta * y[i__];/* L20: */		}	    }	} else {	    iy = ky;	    if (*beta == 0.) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[iy] = 0.;		    iy += *incy;/* L30: */		}	    } else {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[iy] = *beta * y[iy];		    iy += *incy;/* L40: */		}	    }	}    }    if (*alpha == 0.) {	return 0;    }    if (_starpu_lsame_(uplo, "U")) {/*        Form  y  when upper triangle of A is stored. */	kplus1 = *k + 1;	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp1 = *alpha * x[j];		temp2 = 0.;		l = kplus1 - j;/* Computing MAX */		i__2 = 1, i__3 = j - *k;		i__4 = j - 1;		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {		    y[i__] += temp1 * a[l + i__ + j * a_dim1];		    temp2 += a[l + i__ + j * a_dim1] * x[i__];/* L50: */		}		y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;/* L60: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp1 = *alpha * x[jx];		temp2 = 0.;		ix = kx;		iy = ky;		l = kplus1 - j;/* Computing MAX */		i__4 = 1, i__2 = j - *k;		i__3 = j - 1;		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {		    y[iy] += temp1 * a[l + i__ + j * a_dim1];		    temp2 += a[l + i__ + j * a_dim1] * x[ix];		    ix += *incx;		    iy += *incy;/* L70: */		}		y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * 			temp2;		jx += *incx;		jy += *incy;		if (j > *k) {		    kx += *incx;		    ky += *incy;		}/* L80: */	    }	}    } else {/*        Form  y  when lower triangle of A is stored. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp1 = *alpha * x[j];		temp2 = 0.;		y[j] += temp1 * a[j * a_dim1 + 1];		l = 1 - j;/* Computing MIN */		i__4 = *n, i__2 = j + *k;		i__3 = min(i__4,i__2);		for (i__ = j + 1; i__ <= i__3; ++i__) {		    y[i__] += temp1 * a[l + i__ + j * a_dim1];		    temp2 += a[l + i__ + j * a_dim1] * x[i__];/* L90: */		}		y[j] += *alpha * temp2;/* L100: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp1 = *alpha * x[jx];		temp2 = 0.;		y[jy] += temp1 * a[j * a_dim1 + 1];		l = 1 - j;		ix = jx;		iy = jy;/* Computing MIN */		i__4 = *n, i__2 = j + *k;		i__3 = min(i__4,i__2);		for (i__ = j + 1; i__ <= i__3; ++i__) {		    ix += *incx;		    iy += *incy;		    y[iy] += temp1 * a[l + i__ + j * a_dim1];		    temp2 += a[l + i__ + j * a_dim1] * x[ix];/* L110: */		}		y[jy] += *alpha * temp2;		jx += *incx;		jy += *incy;/* L120: */	    }	}    }    return 0;/*     End of DSBMV . */} /* _starpu_dsbmv_ */
 |