| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 | 
							- # StarPU --- Runtime system for heterogeneous multicore architectures.
 
- #
 
- # Copyright (C) 2020       Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
 
- #
 
- # StarPU is free software; you can redistribute it and/or modify
 
- # it under the terms of the GNU Lesser General Public License as published by
 
- # the Free Software Foundation; either version 2.1 of the License, or (at
 
- # your option) any later version.
 
- #
 
- # StarPU is distributed in the hope that it will be useful, but
 
- # WITHOUT ANY WARRANTY; without even the implied warranty of
 
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
- #
 
- # See the GNU Lesser General Public License in COPYING.LGPL for more details.
 
- #
 
- using StarPU
 
- using LinearAlgebra.BLAS
 
- @target STARPU_CPU+STARPU_CUDA
 
- @codelet function gemm(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, alpha :: Float32, beta :: Float32) :: Nothing
 
-     M :: Int32 = height(A)
 
-     N :: Int32 = width(B)
 
-     K :: Int32 = width(A)
 
-     lda :: Int32 = ld(A)
 
-     ldb :: Int32 = ld(B)
 
-     ldc :: Int32 = ld(C)
 
-     STARPU_SGEMM("N", "N", M, N, K, alpha, A, lda, B, ldb, beta, C, ldc)
 
-     return
 
- end
 
- function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, alpha :: Float32, beta :: Float32, nslicesx, nslicesy)
 
-     scale= 3
 
-     tmin=0
 
-     hA,hB,hC = starpu_data_register(A, B, C)
 
-     tmin=0
 
-     perfmodel = starpu_perfmodel(
 
-         perf_type = starpu_perfmodel_type(STARPU_HISTORY_BASED),
 
-         symbol = "gemm"
 
-     )
 
-     cl = starpu_codelet(
 
-         cpu_func  = "gemm",
 
-         cuda_func = "",
 
-         modes =[STARPU_R,STARPU_R,STARPU_RW], 
 
-         perfmodel = perfmodel,
 
-     )
 
-     task = starpu_task(cl = cl, handles =[hA,hB,hC], cl_arg = (alpha,beta), callback = nothing,
 
- 		callback_arg = nothing, tag = nothing, tag_only = nothing,
 
-                        sequential_consistency = true,
 
-                        detach = 1, color = nothing, where = nothing)
 
-     for i in (1 : 10 )
 
-         t=time_ns()
 
- starpu_task_submit(Ref(task.c_task))
 
-         #starpu_task_submit(task)
 
-         starpu_task_wait_for_all()
 
-         t=time_ns()-t
 
- 	if (tmin==0 || tmin>t)
 
-            tmin=t
 
-         end
 
-     end
 
-     starpu_data_unregister(hA)
 
-     starpu_data_unregister(hB)
 
-     starpu_data_unregister(hC)
 
-     return tmin
 
- end
 
- function approximately_equals(
 
-     A :: Matrix{Cfloat},
 
-     B :: Matrix{Cfloat},
 
-     eps = 1e-2
 
- )
 
-     (height, width) = size(A)
 
-     for j in (1 : width)
 
-         for i in (1 : height)
 
-             if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j])))
 
-                 println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])")
 
-                 return false
 
-             end
 
-         end
 
-     end
 
-     return true
 
- end
 
- function check(expected, A, B, C, alpha, beta)
 
-     for i in 1 : 10
 
-         gemm!('N', 'N', alpha, A, B, beta, expected)
 
-     end
 
-     height,width = size(C)
 
-     for i in 1:height
 
-         for j in 1:width
 
-             got = C[i, j]
 
-             exp = expected[i, j]
 
-             err = abs(exp - got) / exp
 
-             if err > 0.0001
 
-                 error("[$i] -> $got != $exp (err $err)")
 
-             end
 
-         end
 
-     end
 
- end
 
- function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy)
 
-     for dim in (start_dim : step_dim : stop_dim)
 
-         A = Array(rand(Cfloat, dim, dim))
 
-         B = Array(rand(Cfloat, dim, dim))
 
-         C = zeros(Float32, dim, dim)
 
-         C_ref = copy(C)
 
-         starpu_memory_pin(A)
 
-         starpu_memory_pin(B)
 
-         starpu_memory_pin(C)
 
-         alpha = 4.0f0
 
-         beta = 2.0f0
 
-         mt =  multiply_with_starpu(A, B, C, alpha, beta, nslicesx, nslicesy)
 
-         gflop = 2 * dim * dim * dim * 1.e-9
 
-         gflops = gflop / (mt * 1.e-9)
 
-         size=dim*dim*dim*4*3/1024/1024
 
-         println(io,"$dim $gflops")
 
-         println("$dim $gflops")
 
-         starpu_memory_unpin(A)
 
-         starpu_memory_unpin(B)
 
-         starpu_memory_unpin(C)
 
-         #check(C_ref, A, B, C, alpha, beta)
 
-     end
 
- end
 
- if size(ARGS, 1) < 1
 
-     filename="x.dat"
 
- else
 
-     filename=ARGS[1]
 
- end
 
- starpu_init()
 
- starpu_cublas_init()
 
- io=open(filename,"w")
 
- compute_times(io,64,512,4096,1,1)
 
- close(io)
 
- starpu_shutdown()
 
 
  |