perf-feedback.texi 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * On-line:: On-line performance feedback
  9. * Off-line:: Off-line performance feedback
  10. * Codelet performance:: Performance of codelets
  11. * Theoretical lower bound on execution time API::
  12. * Memory feedback::
  13. @end menu
  14. @node On-line
  15. @section On-line performance feedback
  16. @menu
  17. * Enabling on-line performance monitoring::
  18. * Task feedback:: Per-task feedback
  19. * Codelet feedback:: Per-codelet feedback
  20. * Worker feedback:: Per-worker feedback
  21. * Bus feedback:: Bus-related feedback
  22. * StarPU-Top:: StarPU-Top interface
  23. @end menu
  24. @node Enabling on-line performance monitoring
  25. @subsection Enabling on-line performance monitoring
  26. In order to enable online performance monitoring, the application can call
  27. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  28. detect whether monitoring is already enabled or not by calling
  29. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  30. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  31. can also be set to 1 to achieve the same effect.
  32. Likewise, performance monitoring is stopped by calling
  33. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  34. does not reset the performance counters so that the application may consult
  35. them later on.
  36. More details about the performance monitoring API are available in section
  37. @ref{Profiling API}.
  38. @node Task feedback
  39. @subsection Per-task feedback
  40. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  41. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  42. structure when a task terminates.
  43. This structure is automatically destroyed when the task structure is destroyed,
  44. either automatically or by calling @code{starpu_task_destroy}.
  45. The @code{starpu_task_profiling_info} structure indicates the date when the
  46. task was submitted (@code{submit_time}), started (@code{start_time}), and
  47. terminated (@code{end_time}), relative to the initialization of
  48. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  49. that has executed the task (@code{workerid}).
  50. These date are stored as @code{timespec} structures which the user may convert
  51. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  52. function.
  53. It it worth noting that the application may directly access this structure from
  54. the callback executed at the end of the task. The @code{starpu_task} structure
  55. associated to the callback currently being executed is indeed accessible with
  56. the @code{starpu_task_get_current()} function.
  57. @node Codelet feedback
  58. @subsection Per-codelet feedback
  59. The @code{per_worker_stats} field of the @code{struct starpu_codelet} structure is
  60. an array of counters. The i-th entry of the array is incremented every time a
  61. task implementing the codelet is executed on the i-th worker.
  62. This array is not reinitialized when profiling is enabled or disabled.
  63. @node Worker feedback
  64. @subsection Per-worker feedback
  65. The second argument returned by the @code{starpu_worker_get_profiling_info}
  66. function is a @code{starpu_worker_profiling_info} structure that gives
  67. statistics about the specified worker. This structure specifies when StarPU
  68. started collecting profiling information for that worker (@code{start_time}),
  69. the duration of the profiling measurement interval (@code{total_time}), the
  70. time spent executing kernels (@code{executing_time}), the time spent sleeping
  71. because there is no task to execute at all (@code{sleeping_time}), and the
  72. number of tasks that were executed while profiling was enabled.
  73. These values give an estimation of the proportion of time spent do real work,
  74. and the time spent either sleeping because there are not enough executable
  75. tasks or simply wasted in pure StarPU overhead.
  76. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  77. information associated to a worker.
  78. When an FxT trace is generated (see @ref{Generating traces}), it is also
  79. possible to use the @code{starpu_workers_activity} script (described in @ref{starpu-workers-activity}) to
  80. generate a graphic showing the evolution of these values during the time, for
  81. the different workers.
  82. @node Bus feedback
  83. @subsection Bus-related feedback
  84. TODO: ajouter STARPU_BUS_STATS
  85. @c how to enable/disable performance monitoring
  86. @c what kind of information do we get ?
  87. The bus speed measured by StarPU can be displayed by using the
  88. @code{starpu_machine_display} tool, for instance:
  89. @example
  90. StarPU has found:
  91. 3 CUDA devices
  92. CUDA 0 (Tesla C2050 02:00.0)
  93. CUDA 1 (Tesla C2050 03:00.0)
  94. CUDA 2 (Tesla C2050 84:00.0)
  95. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  96. RAM 0.000000 5176.530428 5176.492994 5191.710722
  97. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  98. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  99. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  100. @end example
  101. @node StarPU-Top
  102. @subsection StarPU-Top interface
  103. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  104. application and permits the user to change parameters on the fly.
  105. Variables to be monitored can be registered by calling the
  106. @code{starpu_top_add_data_boolean}, @code{starpu_top_add_data_integer},
  107. @code{starpu_top_add_data_float} functions, e.g.:
  108. @cartouche
  109. @smallexample
  110. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  111. @end smallexample
  112. @end cartouche
  113. The application should then call @code{starpu_top_init_and_wait} to give its name
  114. and wait for StarPU-Top to get a start request from the user. The name is used
  115. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  116. @cartouche
  117. @smallexample
  118. starpu_top_init_and_wait("the application");
  119. @end smallexample
  120. @end cartouche
  121. The new values can then be provided thanks to
  122. @code{starpu_top_update_data_boolean}, @code{starpu_top_update_data_integer},
  123. @code{starpu_top_update_data_float}, e.g.:
  124. @cartouche
  125. @smallexample
  126. starpu_top_update_data_integer(data, mynum);
  127. @end smallexample
  128. @end cartouche
  129. Updateable parameters can be registered thanks to @code{starpu_top_register_parameter_boolean}, @code{starpu_top_register_parameter_integer}, @code{starpu_top_register_parameter_float}, e.g.:
  130. @cartouche
  131. @smallexample
  132. float alpha;
  133. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  134. @end smallexample
  135. @end cartouche
  136. @code{modif_hook} is a function which will be called when the parameter is being modified, it can for instance print the new value:
  137. @cartouche
  138. @smallexample
  139. void modif_hook(struct starpu_top_param *d) @{
  140. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  141. @}
  142. @end smallexample
  143. @end cartouche
  144. Task schedulers should notify StarPU-Top when it has decided when a task will be
  145. scheduled, so that it can show it in its Gantt chart, for instance:
  146. @cartouche
  147. @smallexample
  148. starpu_top_task_prevision(task, workerid, begin, end);
  149. @end smallexample
  150. @end cartouche
  151. Starting StarPU-Top@footnote{StarPU-Top is started via the binary
  152. @code{starpu_top}.} and the application can be done two ways:
  153. @itemize
  154. @item The application is started by hand on some machine (and thus already
  155. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  156. checkbox should be unchecked, and the hostname and port (default is 2011) on
  157. which the application is already running should be specified. Clicking on the
  158. connection button will thus connect to the already-running application.
  159. @item StarPU-Top is started first, and clicking on the connection button will
  160. start the application itself (possibly on a remote machine). The SSH checkbox
  161. should be checked, and a command line provided, e.g.:
  162. @example
  163. ssh myserver STARPU_SCHED=heft ./application
  164. @end example
  165. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  166. @example
  167. ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application
  168. @end example
  169. and "localhost" should be used as IP Address to connect to.
  170. @end itemize
  171. @node Off-line
  172. @section Off-line performance feedback
  173. @menu
  174. * Generating traces:: Generating traces with FxT
  175. * Gantt diagram:: Creating a Gantt Diagram
  176. * DAG:: Creating a DAG with graphviz
  177. * starpu-workers-activity:: Monitoring activity
  178. @end menu
  179. @node Generating traces
  180. @subsection Generating traces with FxT
  181. StarPU can use the FxT library (see
  182. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  183. with a limited runtime overhead.
  184. You can either get a tarball:
  185. @example
  186. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  187. @end example
  188. or use the FxT library from CVS (autotools are required):
  189. @example
  190. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  191. % ./bootstrap
  192. @end example
  193. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  194. done following the standard procedure:
  195. @example
  196. % ./configure --prefix=$FXTDIR
  197. % make
  198. % make install
  199. @end example
  200. In order to have StarPU to generate traces, StarPU should be configured with
  201. the @code{--with-fxt} option:
  202. @example
  203. $ ./configure --with-fxt=$FXTDIR
  204. @end example
  205. Or you can simply point the @code{PKG_CONFIG_PATH} to
  206. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  207. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  208. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  209. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  210. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  211. @code{/tmp/} directory by default, or by the directory specified by
  212. the @code{STARPU_FXT_PREFIX} environment variable.
  213. @node Gantt diagram
  214. @subsection Creating a Gantt Diagram
  215. When the FxT trace file @code{filename} has been generated, it is possible to
  216. generate a trace in the Paje format by calling:
  217. @example
  218. % starpu_fxt_tool -i filename
  219. @end example
  220. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  221. to 1 before application execution will make StarPU do it automatically at
  222. application shutdown.
  223. This will create a @code{paje.trace} file in the current directory that
  224. can be inspected with the @url{http://vite.gforge.inria.fr/, ViTE trace
  225. visualizing open-source tool}. It is possible to open the
  226. @code{paje.trace} file with ViTE by using the following command:
  227. @example
  228. % vite paje.trace
  229. @end example
  230. To get names of tasks instead of "unknown", fill the optional @code{name} field
  231. of the codelets, or use a performance model for them.
  232. By default, all tasks are displayed using a green color. To display tasks with
  233. varying colors, pass option @code{-c} to @code{starpu_fxt_tool}.
  234. @node DAG
  235. @subsection Creating a DAG with graphviz
  236. When the FxT trace file @code{filename} has been generated, it is possible to
  237. generate a task graph in the DOT format by calling:
  238. @example
  239. $ starpu_fxt_tool -i filename
  240. @end example
  241. This will create a @code{dag.dot} file in the current directory. This file is a
  242. task graph described using the DOT language. It is possible to get a
  243. graphical output of the graph by using the graphviz library:
  244. @example
  245. $ dot -Tpdf dag.dot -o output.pdf
  246. @end example
  247. @node starpu-workers-activity
  248. @subsection Monitoring activity
  249. When the FxT trace file @code{filename} has been generated, it is possible to
  250. generate an activity trace by calling:
  251. @example
  252. $ starpu_fxt_tool -i filename
  253. @end example
  254. This will create an @code{activity.data} file in the current
  255. directory. A profile of the application showing the activity of StarPU
  256. during the execution of the program can be generated:
  257. @example
  258. $ starpu_workers_activity activity.data
  259. @end example
  260. This will create a file named @code{activity.eps} in the current directory.
  261. This picture is composed of two parts.
  262. The first part shows the activity of the different workers. The green sections
  263. indicate which proportion of the time was spent executed kernels on the
  264. processing unit. The red sections indicate the proportion of time spent in
  265. StartPU: an important overhead may indicate that the granularity may be too
  266. low, and that bigger tasks may be appropriate to use the processing unit more
  267. efficiently. The black sections indicate that the processing unit was blocked
  268. because there was no task to process: this may indicate a lack of parallelism
  269. which may be alleviated by creating more tasks when it is possible.
  270. The second part of the @code{activity.eps} picture is a graph showing the
  271. evolution of the number of tasks available in the system during the execution.
  272. Ready tasks are shown in black, and tasks that are submitted but not
  273. schedulable yet are shown in grey.
  274. @node Codelet performance
  275. @section Performance of codelets
  276. The performance model of codelets (described in @ref{Performance model example}) can be examined by using the
  277. @code{starpu_perfmodel_display} tool:
  278. @example
  279. $ starpu_perfmodel_display -l
  280. file: <malloc_pinned.hannibal>
  281. file: <starpu_slu_lu_model_21.hannibal>
  282. file: <starpu_slu_lu_model_11.hannibal>
  283. file: <starpu_slu_lu_model_22.hannibal>
  284. file: <starpu_slu_lu_model_12.hannibal>
  285. @end example
  286. Here, the codelets of the lu example are available. We can examine the
  287. performance of the 22 kernel (in micro-seconds):
  288. @example
  289. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  290. performance model for cpu
  291. # hash size mean dev n
  292. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  293. performance model for cuda_0
  294. # hash size mean dev n
  295. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  296. performance model for cuda_1
  297. # hash size mean dev n
  298. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  299. performance model for cuda_2
  300. # hash size mean dev n
  301. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  302. @end example
  303. We can see that for the given size, over a sample of a few hundreds of
  304. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  305. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  306. CPUs.
  307. The @code{starpu_regression_display} tool does the same for regression-based
  308. performance models. It also writes a @code{.gp} file in the current directory,
  309. to be run in the @code{gnuplot} tool, which shows the corresponding curve.
  310. The same can also be achieved by using StarPU's library API, see
  311. @ref{Performance Model API} and notably the @code{starpu_perfmodel_load_symbol}
  312. function. The source code of the @code{starpu_perfmodel_display} tool can be a
  313. useful example.
  314. @node Theoretical lower bound on execution time API
  315. @section Theoretical lower bound on execution time
  316. See @ref{Theoretical lower bound on execution time} for an example on how to use
  317. this API. It permits to record a trace of what tasks are needed to complete the
  318. application, and then, by using a linear system, provide a theoretical lower
  319. bound of the execution time (i.e. with an ideal scheduling).
  320. The computed bound is not really correct when not taking into account
  321. dependencies, but for an application which have enough parallelism, it is very
  322. near to the bound computed with dependencies enabled (which takes a huge lot
  323. more time to compute), and thus provides a good-enough estimation of the ideal
  324. execution time.
  325. @deftypefun void starpu_bound_start (int @var{deps}, int @var{prio})
  326. Start recording tasks (resets stats). @var{deps} tells whether
  327. dependencies should be recorded too (this is quite expensive)
  328. @end deftypefun
  329. @deftypefun void starpu_bound_stop (void)
  330. Stop recording tasks
  331. @end deftypefun
  332. @deftypefun void starpu_bound_print_dot ({FILE *}@var{output})
  333. Print the DAG that was recorded
  334. @end deftypefun
  335. @deftypefun void starpu_bound_compute ({double *}@var{res}, {double *}@var{integer_res}, int @var{integer})
  336. Get theoretical upper bound (in ms) (needs glpk support detected by @code{configure} script). It returns 0 if some performance models are not calibrated.
  337. @end deftypefun
  338. @deftypefun void starpu_bound_print_lp ({FILE *}@var{output})
  339. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  340. the lp format
  341. @end deftypefun
  342. @deftypefun void starpu_bound_print_mps ({FILE *}@var{output})
  343. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  344. the mps format
  345. @end deftypefun
  346. @deftypefun void starpu_bound_print ({FILE *}@var{output}, int @var{integer})
  347. Emit statistics of actual execution vs theoretical upper bound. @var{integer}
  348. permits to choose between integer solving (which takes a long time but is
  349. correct), and relaxed solving (which provides an approximate solution).
  350. @end deftypefun
  351. @node Memory feedback
  352. @section Memory feedback
  353. It is possible to display memory usage at the end of the
  354. execution of your application. It allows to check all data allocated
  355. by StarPU have been cleared. To do so, you need to pass the option
  356. @code{--enable-memory-status} when running configure, and to set the
  357. environment variable @code{STARPU_MEMORY_STATUS} when running the
  358. application.
  359. For example, if you do not unregister data at the end of the complex
  360. example, you will get something similar to:
  361. @example
  362. $ STARPU_MEMORY_STATUS=1 ./examples/interface/complex
  363. ...
  364. Memory status :
  365. #-------
  366. Data on Node #3
  367. #-----
  368. Data : 0x553ff40
  369. Size : 16
  370. #--
  371. Data access stats
  372. /!\ Work Underway
  373. Node #0
  374. Direct access : 4
  375. Loaded (Owner) : 0
  376. Loaded (Shared) : 0
  377. Invalidated (was Owner) : 0
  378. Node #3
  379. Direct access : 0
  380. Loaded (Owner) : 0
  381. Loaded (Shared) : 1
  382. Invalidated (was Owner) : 0
  383. #-----
  384. Data : 0x5544710
  385. Size : 16
  386. #--
  387. Data access stats
  388. /!\ Work Underway
  389. Node #0
  390. Direct access : 2
  391. Loaded (Owner) : 0
  392. Loaded (Shared) : 1
  393. Invalidated (was Owner) : 1
  394. Node #3
  395. Direct access : 0
  396. Loaded (Owner) : 1
  397. Loaded (Shared) : 0
  398. Invalidated (was Owner) : 0
  399. @end example