cl_update.mirage 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 4
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 6d78e48f 4461600 0.000000e+00 6.670318e+03 3.279077e+02 6.103341e+06 4.080961e+10 915
  39. 8ec75d42 14753312 0.000000e+00 2.178007e+04 1.559694e+03 1.008417e+07 2.207603e+11 463
  40. 49ec0825 34613280 0.000000e+00 5.101465e+04 2.613713e+03 2.443602e+07 1.249867e+12 479
  41. ####################
  42. # COMB_1
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb1)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 6d78e48f 4461600 0.000000e+00 1.028619e+03 1.201323e+02 5.626547e+05 5.866515e+08 547
  72. 8ec75d42 14753312 0.000000e+00 1.871093e+03 3.437894e+02 1.981488e+06 3.832713e+09 1059
  73. 49ec0825 34613280 0.000000e+00 5.018828e+03 7.664203e+02 4.672528e+06 2.399748e+10 931
  74. ####################
  75. # COMB_2
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 1
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda1_impl0 (Comb2)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 6d78e48f 4461600 0.000000e+00 1.024201e+03 1.096599e+02 6.452464e+05 6.684377e+08 630
  105. 8ec75d42 14753312 0.000000e+00 1.877457e+03 3.608958e+02 1.907496e+06 3.713572e+09 1016
  106. 49ec0825 34613280 0.000000e+00 5.018101e+03 7.255196e+02 5.314169e+06 2.722447e+10 1059
  107. ####################
  108. # COMB_3
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb3)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 6d78e48f 4461600 0.000000e+00 1.010004e+03 1.090743e+02 5.383321e+05 5.500588e+08 533
  138. 8ec75d42 14753312 0.000000e+00 1.986058e+03 3.264552e+02 1.288952e+06 2.629100e+09 649
  139. 49ec0825 34613280 0.000000e+00 5.064765e+03 7.492118e+02 4.948276e+06 2.561026e+10 977