cl_update.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_2
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 1
  16. ####################
  17. # DEV_0
  18. # device id
  19. 1
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cuda1_impl0 (Comb2)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 8ec75d42 14753312 0.000000e+00 1.774670e+03 3.622348e+02 1.348749e+06 2.493306e+09 760
  39. 6d78e48f 4461600 0.000000e+00 1.036351e+03 9.390524e+01 2.839601e+05 2.966985e+08 274
  40. 49ec0825 34613280 0.000000e+00 4.962997e+03 6.650844e+02 5.096998e+06 2.575067e+10 1027
  41. ####################
  42. # COMB_3
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 2
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda2_impl0 (Comb3)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 8ec75d42 14753312 0.000000e+00 1.813689e+03 3.729019e+02 1.331248e+06 2.516537e+09 734
  72. 6d78e48f 4461600 0.000000e+00 1.023951e+03 1.005326e+02 3.553110e+05 3.673281e+08 347
  73. 49ec0825 34613280 0.000000e+00 5.017264e+03 7.095917e+02 4.365019e+06 2.233852e+10 870
  74. ####################
  75. # COMB_0
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 0
  82. ####################
  83. # DEV_0
  84. # device id
  85. 0
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cpu0_impl0 (Comb0)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 8ec75d42 14753312 0.000000e+00 4.692078e+04 5.010795e+02 1.501465e+06 7.045793e+10 32
  105. 6d78e48f 4461600 0.000000e+00 1.405585e+04 1.896523e+02 7.590156e+05 1.067055e+10 54
  106. 49ec0825 34613280 0.000000e+00 1.108029e+05 1.348959e+03 3.545692e+06 3.929311e+11 32
  107. ####################
  108. # COMB_8
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 7
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda7_impl0 (Comb8)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 8ec75d42 14753312 0.000000e+00 1.859413e+03 3.366203e+02 1.309027e+06 2.513795e+09 704
  138. 6d78e48f 4461600 0.000000e+00 1.027564e+03 1.046018e+02 3.483442e+05 3.616551e+08 339
  139. 49ec0825 34613280 0.000000e+00 5.060000e+03 7.405627e+02 4.164380e+06 2.152312e+10 823
  140. ####################
  141. # COMB_4
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 1
  148. ####################
  149. # DEV_0
  150. # device id
  151. 6
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cuda6_impl0 (Comb4)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. 8ec75d42 14753312 0.000000e+00 1.862800e+03 3.783314e+02 8.438483e+05 1.636760e+09 453
  171. 6d78e48f 4461600 0.000000e+00 9.567271e+02 3.148502e+01 5.606421e+05 5.369624e+08 586
  172. 49ec0825 34613280 0.000000e+00 4.965851e+03 6.509733e+02 5.810046e+06 2.934763e+10 1170
  173. ####################
  174. # COMB_6
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 3
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda3_impl0 (Comb6)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. 8ec75d42 14753312 0.000000e+00 1.889366e+03 3.958521e+02 1.186522e+06 2.340180e+09 628
  204. 6d78e48f 4461600 0.000000e+00 1.028680e+03 8.044529e+01 2.880303e+05 2.981029e+08 280
  205. 49ec0825 34613280 0.000000e+00 5.035634e+03 7.113130e+02 4.899672e+06 2.516526e+10 973
  206. ####################
  207. # COMB_5
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 0
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda0_impl0 (Comb5)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. 8ec75d42 14753312 0.000000e+00 1.814024e+03 3.173708e+02 1.186372e+06 2.217980e+09 654
  237. 6d78e48f 4461600 0.000000e+00 1.025445e+03 7.185494e+01 3.466003e+05 3.571646e+08 338
  238. 49ec0825 34613280 0.000000e+00 5.092715e+03 7.051028e+02 3.513973e+06 1.823871e+10 690
  239. ####################
  240. # COMB_1
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 4
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda4_impl0 (Comb1)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. 8ec75d42 14753312 0.000000e+00 1.793350e+03 3.531620e+02 1.388053e+06 2.585801e+09 774
  270. 6d78e48f 4461600 0.000000e+00 1.033622e+03 1.055186e+02 3.783058e+05 3.951004e+08 366
  271. 49ec0825 34613280 0.000000e+00 4.986601e+03 7.025210e+02 5.345636e+06 2.718562e+10 1072
  272. ####################
  273. # COMB_7
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 1
  280. ####################
  281. # DEV_0
  282. # device id
  283. 5
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cuda5_impl0 (Comb7)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. 8ec75d42 14753312 0.000000e+00 1.781570e+03 3.261441e+02 1.501864e+06 2.765346e+09 843
  303. 6d78e48f 4461600 0.000000e+00 1.022184e+03 1.018115e+02 3.751415e+05 3.872679e+08 367
  304. 49ec0825 34613280 0.000000e+00 5.102994e+03 7.050225e+02 4.327339e+06 2.250389e+10 848