basic-api.texi 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @node StarPU Basic API
  8. @chapter StarPU Basic API
  9. @menu
  10. * Initialization and Termination:: Initialization and Termination methods
  11. * Workers' Properties:: Methods to enumerate workers' properties
  12. * Data Library:: Methods to manipulate data
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Codelets and Tasks:: Methods to construct tasks
  16. * Explicit Dependencies:: Explicit Dependencies
  17. * Implicit Data Dependencies:: Implicit Data Dependencies
  18. * Performance Model API::
  19. * Profiling API:: Profiling API
  20. * CUDA extensions:: CUDA extensions
  21. * OpenCL extensions:: OpenCL extensions
  22. * Cell extensions:: Cell extensions
  23. * Miscellaneous helpers::
  24. @end menu
  25. @node Initialization and Termination
  26. @section Initialization and Termination
  27. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  28. This is StarPU initialization method, which must be called prior to any other
  29. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  30. policy, number of cores, ...) by passing a non-null argument. Default
  31. configuration is used if the passed argument is @code{NULL}.
  32. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  33. indicates that no worker was available (so that StarPU was not initialized).
  34. @end deftypefun
  35. @deftp {Data type} {struct starpu_conf}
  36. This structure is passed to the @code{starpu_init} function in order
  37. to configure StarPU.
  38. When the default value is used, StarPU automatically selects the number
  39. of processing units and takes the default scheduling policy. This parameter
  40. overwrites the equivalent environment variables.
  41. @table @asis
  42. @item @code{sched_policy_name} (default = NULL)
  43. This is the name of the scheduling policy. This can also be specified
  44. with the @code{STARPU_SCHED} environment variable.
  45. @item @code{sched_policy} (default = NULL)
  46. This is the definition of the scheduling policy. This field is ignored
  47. if @code{sched_policy_name} is set.
  48. @item @code{ncpus} (default = -1)
  49. This is the number of CPU cores that StarPU can use. This can also be
  50. specified with the @code{STARPU_NCPUS} environment variable.
  51. @item @code{ncuda} (default = -1)
  52. This is the number of CUDA devices that StarPU can use. This can also
  53. be specified with the @code{STARPU_NCUDA} environment variable.
  54. @item @code{nopencl} (default = -1)
  55. This is the number of OpenCL devices that StarPU can use. This can
  56. also be specified with the @code{STARPU_NOPENCL} environment variable.
  57. @item @code{nspus} (default = -1)
  58. This is the number of Cell SPUs that StarPU can use. This can also be
  59. specified with the @code{STARPU_NGORDON} environment variable.
  60. @item @code{use_explicit_workers_bindid} (default = 0)
  61. If this flag is set, the @code{workers_bindid} array indicates where
  62. the different workers are bound, otherwise StarPU automatically
  63. selects where to bind the different workers unless the
  64. @code{STARPU_WORKERS_CPUID} environment variable is set. The
  65. @code{STARPU_WORKERS_CPUID} environment variable is ignored if the
  66. @code{use_explicit_workers_bindid} flag is set.
  67. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  68. If the @code{use_explicit_workers_bindid} flag is set, this array
  69. indicates where to bind the different workers. The i-th entry of the
  70. @code{workers_bindid} indicates the logical identifier of the
  71. processor which should execute the i-th worker. Note that the logical
  72. ordering of the CPUs is either determined by the OS, or provided by
  73. the @code{hwloc} library in case it is available. When this flag is
  74. set, the @ref{STARPU_WORKERS_CPUID} environment variable is ignored.
  75. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  76. If this flag is set, the CUDA workers will be attached to the CUDA
  77. devices specified in the @code{workers_cuda_gpuid} array. Otherwise,
  78. StarPU affects the CUDA devices in a round-robin fashion. When this
  79. flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  80. ignored.
  81. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  82. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  83. contains the logical identifiers of the CUDA devices (as used by
  84. @code{cudaGetDevice}).
  85. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  86. If this flag is set, the OpenCL workers will be attached to the OpenCL
  87. devices specified in the @code{workers_opencl_gpuid} array. Otherwise,
  88. StarPU affects the OpenCL devices in a round-robin fashion.
  89. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  90. todo
  91. @item @code{calibrate} (default = 0)
  92. If this flag is set, StarPU will calibrate the performance models when
  93. executing tasks. If this value is equal to -1, the default value is
  94. used. The default value is overwritten by the @code{STARPU_CALIBRATE}
  95. environment variable when it is set.
  96. @item @code{single_combined_worker} (default = 0)
  97. By default, StarPU creates various combined workers according to the machine
  98. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  99. not support concurrent calls to parallel code. In such case, setting this flag
  100. makes StarPU only create one combined worker, containing all
  101. the CPU workers. The default value is overwritten by the
  102. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  103. @end table
  104. @end deftp
  105. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  106. This function initializes the @code{starpu_conf} structure passed as argument
  107. with the default values. In case some configuration parameters are already
  108. specified through environment variables, @code{starpu_conf_init} initializes
  109. the fields of the structure according to the environment variables. For
  110. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  111. @code{.ncuda} field of the structure passed as argument.
  112. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  113. indicates that the argument was NULL.
  114. @end deftypefun
  115. @deftypefun void starpu_shutdown (void)
  116. This is StarPU termination method. It must be called at the end of the
  117. application: statistics and other post-mortem debugging information are not
  118. guaranteed to be available until this method has been called.
  119. @end deftypefun
  120. @node Workers' Properties
  121. @section Workers' Properties
  122. @deftp {DataType} {enum starpu_archtype}
  123. The different values are:
  124. @table @asis
  125. @item @code{STARPU_CPU_WORKER}
  126. @item @code{STARPU_CUDA_WORKER}
  127. @item @code{STARPU_OPENCL_WORKER}
  128. @item @code{STARPU_GORDON_WORKER}
  129. @end table
  130. @end deftp
  131. @deftypefun unsigned starpu_worker_get_count (void)
  132. This function returns the number of workers (i.e. processing units executing
  133. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  134. @end deftypefun
  135. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  136. Returns the number of workers of the given type indicated by the argument. A positive
  137. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  138. the type is not valid otherwise.
  139. @end deftypefun
  140. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  141. This function returns the number of CPUs controlled by StarPU. The returned
  142. value should be at most @code{STARPU_MAXCPUS}.
  143. @end deftypefun
  144. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  145. This function returns the number of CUDA devices controlled by StarPU. The returned
  146. value should be at most @code{STARPU_MAXCUDADEVS}.
  147. @end deftypefun
  148. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  149. This function returns the number of OpenCL devices controlled by StarPU. The returned
  150. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  151. @end deftypefun
  152. @deftypefun unsigned starpu_spu_worker_get_count (void)
  153. This function returns the number of Cell SPUs controlled by StarPU.
  154. @end deftypefun
  155. @deftypefun int starpu_worker_get_id (void)
  156. This function returns the identifier of the current worker, i.e the one associated to the calling
  157. thread. The returned value is either -1 if the current context is not a StarPU
  158. worker (i.e. when called from the application outside a task or a callback), or
  159. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  160. @end deftypefun
  161. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  162. This function gets the list of identifiers of workers with the given
  163. type. It fills the workerids array with the identifiers of the workers that have the type
  164. indicated in the first argument. The maxsize argument indicates the size of the
  165. workids array. The returned value gives the number of identifiers that were put
  166. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  167. workers with the appropriate type: in that case, the array is filled with the
  168. maxsize first elements. To avoid such overflows, the value of maxsize can be
  169. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  170. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  171. @end deftypefun
  172. @deftypefun int starpu_worker_get_devid (int @var{id})
  173. This functions returns the device id of the given worker. The worker
  174. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  175. CUDA worker, this device identifier is the logical device identifier exposed by
  176. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  177. identifier of a CPU worker is the logical identifier of the core on which the
  178. worker was bound; this identifier is either provided by the OS or by the
  179. @code{hwloc} library in case it is available.
  180. @end deftypefun
  181. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  182. This function returns the type of processing unit associated to a
  183. worker. The worker identifier is a value returned by the
  184. @code{starpu_worker_get_id} function). The returned value
  185. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  186. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  187. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  188. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  189. identifier is unspecified.
  190. @end deftypefun
  191. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  192. This function allows to get the name of a given worker.
  193. StarPU associates a unique human readable string to each processing unit. This
  194. function copies at most the @var{maxlen} first bytes of the unique string
  195. associated to a worker identified by its identifier @var{id} into the
  196. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  197. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  198. function on an invalid identifier results in an unspecified behaviour.
  199. @end deftypefun
  200. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  201. This function returns the identifier of the memory node associated to the
  202. worker identified by @var{workerid}.
  203. @end deftypefun
  204. @node Data Library
  205. @section Data Library
  206. @menu
  207. * Introduction to Data Library::
  208. * Basic Data Library API::
  209. * Access registered data from the application::
  210. @end menu
  211. This section describes the data management facilities provided by StarPU.
  212. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  213. design their own data interfaces if required.
  214. @node Introduction to Data Library
  215. @subsection Introduction
  216. Data management is done at a high-level in StarPU: rather than accessing a mere
  217. list of contiguous buffers, the tasks may manipulate data that are described by
  218. a high-level construct which we call data interface.
  219. An example of data interface is the "vector" interface which describes a
  220. contiguous data array on a spefic memory node. This interface is a simple
  221. structure containing the number of elements in the array, the size of the
  222. elements, and the address of the array in the appropriate address space (this
  223. address may be invalid if there is no valid copy of the array in the memory
  224. node). More informations on the data interfaces provided by StarPU are
  225. given in @ref{Data Interfaces}.
  226. When a piece of data managed by StarPU is used by a task, the task
  227. implementation is given a pointer to an interface describing a valid copy of
  228. the data that is accessible from the current processing unit.
  229. Every worker is associated to a memory node which is a logical abstraction of
  230. the address space from which the processing unit gets its data. For instance,
  231. the memory node associated to the different CPU workers represents main memory
  232. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  233. Every memory node is identified by a logical index which is accessible from the
  234. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  235. to StarPU, the specified memory node indicates where the piece of data
  236. initially resides (we also call this memory node the home node of a piece of
  237. data).
  238. @node Basic Data Library API
  239. @subsection Basic Data Library API
  240. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  241. This function allocates data of the given size in main memory. It will also try to pin it in
  242. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  243. thus permit data transfer and computation overlapping. The allocated buffer must
  244. be freed thanks to the @code{starpu_free} function.
  245. @end deftypefun
  246. @deftypefun int starpu_free (void *@var{A})
  247. This function frees memory which has previously allocated with
  248. @code{starpu_malloc}.
  249. @end deftypefun
  250. @deftp {Data Type} starpu_access_mode
  251. This datatype describes a data access mode. The different available modes are:
  252. @table @asis
  253. @item @code{STARPU_R}: read-only mode.
  254. @item @code{STARPU_W}: write-only mode.
  255. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  256. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  257. @item @code{STARPU_REDUX} reduction mode.
  258. @end table
  259. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  260. @end deftp
  261. @deftp {Data Type} {starpu_data_handle}
  262. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  263. data. Once a piece of data has been registered to StarPU, it is associated to a
  264. @code{starpu_data_handle} which keeps track of the state of the piece of data
  265. over the entire machine, so that we can maintain data consistency and locate
  266. data replicates for instance.
  267. @end deftp
  268. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops} *@var{ops})
  269. Register a piece of data into the handle located at the @var{handleptr}
  270. address. The @var{interface} buffer contains the initial description of the
  271. data in the home node. The @var{ops} argument is a pointer to a structure
  272. describing the different methods used to manipulate this type of interface. See
  273. @ref{struct starpu_data_interface_ops} for more details on this structure.
  274. If @code{home_node} is -1, StarPU will automatically
  275. allocate the memory when it is used for the
  276. first time in write-only mode. Once such data handle has been automatically
  277. allocated, it is possible to access it using any access mode.
  278. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  279. matrix) which can be registered by the means of helper functions (e.g.
  280. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  281. @end deftypefun
  282. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  283. This function unregisters a data handle from StarPU. If the data was
  284. automatically allocated by StarPU because the home node was -1, all
  285. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  286. is put back into the home node in the buffer that was initially registered.
  287. Using a data handle that has been unregistered from StarPU results in an
  288. undefined behaviour.
  289. @end deftypefun
  290. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle @var{handle})
  291. This is the same as starpu_data_unregister, except that StarPU does not put back
  292. a valid copy into the home node, in the buffer that was initially registered.
  293. @end deftypefun
  294. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  295. Destroy all replicates of the data handle. After data invalidation, the first
  296. access to the handle must be performed in write-only mode. Accessing an
  297. invalidated data in read-mode results in undefined behaviour.
  298. @end deftypefun
  299. @c TODO create a specific sections about user interaction with the DSM ?
  300. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  301. This function sets the write-through mask of a given data, i.e. a bitmask of
  302. nodes where the data should be always replicated after modification.
  303. @end deftypefun
  304. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  305. Issue a prefetch request for a given data to a given node, i.e.
  306. requests that the data be replicated to the given node, so that it is available
  307. there for tasks. If the @var{async} parameter is 0, the call will block until
  308. the transfer is achieved, else the call will return as soon as the request is
  309. scheduled (which may however have to wait for a task completion).
  310. @end deftypefun
  311. @deftypefun starpu_data_handle starpu_data_lookup ({const void *}@var{ptr})
  312. todo
  313. @end deftypefun
  314. @deftypefun int starpu_data_request_allocation (starpu_data_handle @var{handle}, uint32_t @var{node})
  315. todo
  316. @end deftypefun
  317. @deftypefun void starpu_data_query_status (starpu_data_handle @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  318. Query the status of the handle on the specified memory node.
  319. @end deftypefun
  320. @deftypefun void starpu_data_advise_as_important (starpu_data_handle @var{handle}, unsigned @var{is_important})
  321. This function allows to specify that a piece of data can be discarded
  322. without impacting the application.
  323. @end deftypefun
  324. @node Access registered data from the application
  325. @subsection Access registered data from the application
  326. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  327. The application must call this function prior to accessing registered data from
  328. main memory outside tasks. StarPU ensures that the application will get an
  329. up-to-date copy of the data in main memory located where the data was
  330. originally registered, and that all concurrent accesses (e.g. from tasks) will
  331. be consistent with the access mode specified in the @var{mode} argument.
  332. @code{starpu_data_release} must be called once the application does not need to
  333. access the piece of data anymore. Note that implicit data
  334. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  335. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  336. the data, unless that they have not been disabled explictly by calling
  337. @code{starpu_data_set_default_sequential_consistency_flag} or
  338. @code{starpu_data_set_sequential_consistency_flag}.
  339. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  340. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  341. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  342. @end deftypefun
  343. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  344. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  345. @code{starpu_data_release}. When the data specified in the first argument is
  346. available in the appropriate access mode, the callback function is executed.
  347. The application may access the requested data during the execution of this
  348. callback. The callback function must call @code{starpu_data_release} once the
  349. application does not need to access the piece of data anymore.
  350. Note that implicit data dependencies are also enforced by
  351. @code{starpu_data_acquire_cb} in case they are enabled.
  352. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  353. be called from task callbacks. Upon successful completion, this function
  354. returns 0.
  355. @end deftypefun
  356. @deftypefun void STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  357. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  358. except that the code to be executed in a callback is directly provided as a
  359. macro parameter, and the data handle is automatically released after it. This
  360. permits to easily execute code which depends on the value of some registered
  361. data. This is non-blocking too and may be called from task callbacks.
  362. @end deftypefun
  363. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  364. This function releases the piece of data acquired by the application either by
  365. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  366. @end deftypefun
  367. @node Data Interfaces
  368. @section Data Interfaces
  369. There are several ways to register a memory region so that it can be managed by
  370. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  371. matrices as well as BCSR and CSR sparse matrices.
  372. @deftypefun void starpu_void_data_register ({starpu_data_handle *}@var{handle})
  373. Register a void interface. There is no data really associated to that
  374. interface, but it may be used as a synchronization mechanism. It also
  375. permits to express an abstract piece of data that is managed by the
  376. application internally: this makes it possible to forbid the
  377. concurrent execution of different tasks accessing the same "void" data
  378. in read-write concurrently.
  379. @end deftypefun
  380. @deftypefun void starpu_variable_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  381. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  382. typically a scalar, and initialize @var{handle} to represent this data
  383. item.
  384. @smallexample
  385. float var;
  386. starpu_data_handle var_handle;
  387. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  388. @end smallexample
  389. @end deftypefun
  390. @deftypefun void starpu_vector_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{count}, size_t @var{size})
  391. Register the @var{count} @var{size}-byte elements pointed to by
  392. @var{ptr} and initialize @var{handle} to represent it.
  393. @example
  394. float vector[NX];
  395. starpu_data_handle vector_handle;
  396. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  397. sizeof(vector[0]));
  398. @end example
  399. @end deftypefun
  400. @deftypefun void starpu_matrix_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{size})
  401. Register the @var{nx}x@var{ny} 2D matrix of @var{size}-byte elements
  402. pointed by @var{ptr} and initialize @var{handle} to represent it.
  403. @var{ld} specifies the number of extra elements present at the end of
  404. each row; a non-zero @var{ld} adds padding, which can be useful for
  405. alignment purposes.
  406. @example
  407. float *matrix;
  408. starpu_data_handle matrix_handle;
  409. matrix = (float*)malloc(width * height * sizeof(float));
  410. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  411. width, width, height, sizeof(float));
  412. @end example
  413. @end deftypefun
  414. @deftypefun void starpu_block_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{size})
  415. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{size}-byte
  416. elements pointed by @var{ptr} and initialize @var{handle} to represent
  417. it. Again, @var{ldy} and @var{ldz} specify the number of extra elements
  418. present at the end of each row or column.
  419. @example
  420. float *block;
  421. starpu_data_handle block_handle;
  422. block = (float*)malloc(nx*ny*nz*sizeof(float));
  423. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  424. nx, nx*ny, nx, ny, nz, sizeof(float));
  425. @end example
  426. @end deftypefun
  427. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  428. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  429. Compressed Sparse Row Representation) sparse matrix interface.
  430. TODO
  431. @end deftypefun
  432. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  433. This variant of @code{starpu_data_register} uses the CSR (Compressed
  434. Sparse Row Representation) sparse matrix interface.
  435. TODO
  436. @end deftypefun
  437. @deftypefun void *starpu_data_get_interface_on_node (starpu_data_handle @var{handle}, unsigned @var{memory_node})
  438. todo
  439. @end deftypefun
  440. @node Data Partition
  441. @section Data Partition
  442. @menu
  443. * Basic API::
  444. * Predefined filter functions::
  445. @end menu
  446. @node Basic API
  447. @subsection Basic API
  448. @deftp {Data Type} {struct starpu_data_filter}
  449. The filter structure describes a data partitioning operation, to be given to the
  450. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  451. for an example. The different fields are:
  452. @table @asis
  453. @item @code{filter_func}
  454. This function fills the @code{child_interface} structure with interface
  455. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  456. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  457. @item @code{nchildren}
  458. This is the number of parts to partition the data into.
  459. @item @code{get_nchildren}
  460. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  461. children depends on the actual data (e.g. the number of blocks in a sparse
  462. matrix).
  463. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  464. @item @code{get_child_ops}
  465. In case the resulting children use a different data interface, this function
  466. returns which interface is used by child number @code{id}.
  467. @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  468. @item @code{filter_arg}
  469. Some filters take an addition parameter, but this is usually unused.
  470. @item @code{filter_arg_ptr}
  471. Some filters take an additional array parameter like the sizes of the parts, but
  472. this is usually unused.
  473. @end table
  474. @end deftp
  475. @deftypefun void starpu_data_partition (starpu_data_handle @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  476. @anchor{starpu_data_partition}
  477. This requests partitioning one StarPU data @code{initial_handle} into several
  478. subdata according to the filter @code{f}, as shown in the following example:
  479. @cartouche
  480. @smallexample
  481. struct starpu_data_filter f = @{
  482. .filter_func = starpu_vertical_block_filter_func,
  483. .nchildren = nslicesx,
  484. .get_nchildren = NULL,
  485. .get_child_ops = NULL
  486. @};
  487. starpu_data_partition(A_handle, &f);
  488. @end smallexample
  489. @end cartouche
  490. @end deftypefun
  491. @deftypefun void starpu_data_unpartition (starpu_data_handle @var{root_data}, uint32_t @var{gathering_node})
  492. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  493. collected back into one big piece in the @code{gathering_node} (usually 0).
  494. @cartouche
  495. @smallexample
  496. starpu_data_unpartition(A_handle, 0);
  497. @end smallexample
  498. @end cartouche
  499. @end deftypefun
  500. @deftypefun int starpu_data_get_nb_children (starpu_data_handle @var{handle})
  501. This function returns the number of children.
  502. @end deftypefun
  503. @deftypefun starpu_data_handle starpu_data_get_child (starpu_data_handle @var{handle}, unsigned @var{i})
  504. todo
  505. @end deftypefun
  506. @deftypefun starpu_data_handle starpu_data_get_sub_data (starpu_data_handle @var{root_data}, unsigned @var{depth}, ... )
  507. After partitioning a StarPU data by applying a filter,
  508. @code{starpu_data_get_sub_data} can be used to get handles for each of
  509. the data portions. @code{root_data} is the parent data that was
  510. partitioned. @code{depth} is the number of filters to traverse (in
  511. case several filters have been applied, to e.g. partition in row
  512. blocks, and then in column blocks), and the subsequent
  513. parameters are the indexes. The function returns a handle to the
  514. subdata.
  515. @cartouche
  516. @smallexample
  517. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  518. @end smallexample
  519. @end cartouche
  520. @end deftypefun
  521. @deftypefun starpu_data_handle starpu_data_vget_sub_data (starpu_data_handle @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  522. This function is similar to @code{starpu_data_get_sub_data} but uses a
  523. va_list for the parameter list.
  524. @end deftypefun
  525. @deftypefun void starpu_data_map_filters(starpu_data_handle @var{root_data}, unsigned @var{nfilters}, ...)
  526. todo
  527. @end deftypefun
  528. @deftypefun void starpu_data_vmap_filters(starpu_data_handle @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  529. todo
  530. @end deftypefun
  531. @node Predefined filter functions
  532. @subsection Predefined filter functions
  533. @menu
  534. * Partitioning BCSR Data::
  535. * Partitioning BLAS interface::
  536. * Partitioning Vector Data::
  537. * Partitioning Block Data::
  538. @end menu
  539. This section gives a partial list of the predefined partitioning functions.
  540. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  541. list can be found in @code{starpu_data_filters.h} .
  542. @node Partitioning BCSR Data
  543. @subsubsection Partitioning BCSR Data
  544. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  545. TODO
  546. @end deftypefun
  547. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  548. TODO
  549. @end deftypefun
  550. @node Partitioning BLAS interface
  551. @subsubsection Partitioning BLAS interface
  552. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  553. This partitions a dense Matrix into horizontal blocks.
  554. @end deftypefun
  555. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  556. This partitions a dense Matrix into vertical blocks.
  557. @end deftypefun
  558. @node Partitioning Vector Data
  559. @subsubsection Partitioning Vector Data
  560. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  561. This partitions a vector into blocks of the same size.
  562. @end deftypefun
  563. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  564. This partitions a vector into blocks of sizes given in the @var{filter_arg_ptr}
  565. field of @var{f}, supposed to point on a @code{uint32_t*} array.
  566. @end deftypefun
  567. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  568. This partitions a vector into two blocks, the first block size being given in
  569. the @var{filter_arg} field of @var{f}.
  570. @end deftypefun
  571. @node Partitioning Block Data
  572. @subsubsection Partitioning Block Data
  573. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  574. This partitions a 3D matrix along the X axis.
  575. @end deftypefun
  576. @node Codelets and Tasks
  577. @section Codelets and Tasks
  578. This section describes the interface to manipulate codelets and tasks.
  579. @deftp {Data Type} {struct starpu_codelet}
  580. The codelet structure describes a kernel that is possibly implemented on various
  581. targets. For compatibility, make sure to initialize the whole structure to zero.
  582. @table @asis
  583. @item @code{where}
  584. Indicates which types of processing units are able to execute the codelet.
  585. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  586. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  587. indicates that it is only available on Cell SPUs.
  588. @item @code{cpu_func} (optional)
  589. Is a function pointer to the CPU implementation of the codelet. Its prototype
  590. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  591. argument being the array of data managed by the data management library, and
  592. the second argument is a pointer to the argument passed from the @code{cl_arg}
  593. field of the @code{starpu_task} structure.
  594. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  595. the @code{where} field, it must be non-null otherwise. When multiple CPU
  596. implementations are used, this field must be set to
  597. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}.
  598. @item @code{cpu_funcs} (optional)
  599. Is an array of function pointers to the CPU implementations of the codelet. This
  600. field is ignored if the @code{cpu_func} field is set to anything else than
  601. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Otherwise, it should contain at
  602. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  603. @item @code{cuda_func} (optional)
  604. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  605. must be a host-function written in the CUDA runtime API}. Its prototype must
  606. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  607. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  608. field, it must be non-null otherwise. When multiple CUDA implementations are
  609. used, this field must be set to @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}.
  610. @item @code{cuda_funcs} (optional)
  611. Is an array of function pointers to the CUDA implementations of the codelet.
  612. This field is ignored if the @code{cuda_func} field is set to anything else than
  613. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}. Otherwise, it should contain at
  614. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  615. @item @code{opencl_func} (optional)
  616. Is a function pointer to the OpenCL implementation of the codelet. Its
  617. prototype must be:
  618. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  619. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  620. @code{where} field, it must be non-null otherwise. When multiple OpenCL
  621. implementations are used, this field must be set to
  622. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}.
  623. @item @code{opencl_funcs} (optional)
  624. Is an array of function pointers to the OpenCL implementations of the codelet.
  625. This field is ignored if the @code{opencl_func} field is set to anything else
  626. than @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}. Otherwise, it should contain
  627. at least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  628. @item @code{gordon_func} (optional)
  629. This is the index of the Cell SPU implementation within the Gordon library.
  630. See Gordon documentation for more details on how to register a kernel and
  631. retrieve its index.
  632. @item @code{nbuffers}
  633. Specifies the number of arguments taken by the codelet. These arguments are
  634. managed by the DSM and are accessed from the @code{void *buffers[]}
  635. array. The constant argument passed with the @code{cl_arg} field of the
  636. @code{starpu_task} structure is not counted in this number. This value should
  637. not be above @code{STARPU_NMAXBUFS}.
  638. @item @code{model} (optional)
  639. This is a pointer to the task duration performance model associated to this
  640. codelet. This optional field is ignored when set to @code{NULL}.
  641. TODO
  642. @item @code{power_model} (optional)
  643. This is a pointer to the task power consumption performance model associated
  644. to this codelet. This optional field is ignored when set to @code{NULL}.
  645. In the case of parallel codelets, this has to account for all processing units
  646. involved in the parallel execution.
  647. TODO
  648. @end table
  649. @end deftp
  650. @deftp {Data Type} {struct starpu_task}
  651. The @code{starpu_task} structure describes a task that can be offloaded on the various
  652. processing units managed by StarPU. It instantiates a codelet. It can either be
  653. allocated dynamically with the @code{starpu_task_create} method, or declared
  654. statically. In the latter case, the programmer has to zero the
  655. @code{starpu_task} structure and to fill the different fields properly. The
  656. indicated default values correspond to the configuration of a task allocated
  657. with @code{starpu_task_create}.
  658. @table @asis
  659. @item @code{cl}
  660. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  661. describes where the kernel should be executed, and supplies the appropriate
  662. implementations. When set to @code{NULL}, no code is executed during the tasks,
  663. such empty tasks can be useful for synchronization purposes.
  664. @item @code{buffers}
  665. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  666. different pieces of data accessed by the task, and how they should be accessed.
  667. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  668. @code{handle} field specifies the handle of the piece of data, and the
  669. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  670. of entries in this array must be specified in the @code{nbuffers} field of the
  671. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  672. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  673. option when configuring StarPU.
  674. @item @code{cl_arg} (optional; default: @code{NULL})
  675. This pointer is passed to the codelet through the second argument
  676. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  677. In the specific case of the Cell processor, see the @code{cl_arg_size}
  678. argument.
  679. @item @code{cl_arg_size} (optional, Cell-specific)
  680. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  681. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  682. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  683. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  684. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  685. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  686. codelets, where the @code{cl_arg} pointer is given as such.
  687. @item @code{callback_func} (optional) (default: @code{NULL})
  688. This is a function pointer of prototype @code{void (*f)(void *)} which
  689. specifies a possible callback. If this pointer is non-null, the callback
  690. function is executed @emph{on the host} after the execution of the task. The
  691. callback is passed the value contained in the @code{callback_arg} field. No
  692. callback is executed if the field is set to @code{NULL}.
  693. @item @code{callback_arg} (optional) (default: @code{NULL})
  694. This is the pointer passed to the callback function. This field is ignored if
  695. the @code{callback_func} is set to @code{NULL}.
  696. @item @code{use_tag} (optional) (default: @code{0})
  697. If set, this flag indicates that the task should be associated with the tag
  698. contained in the @code{tag_id} field. Tag allow the application to synchronize
  699. with the task and to express task dependencies easily.
  700. @item @code{tag_id}
  701. This fields contains the tag associated to the task if the @code{use_tag} field
  702. was set, it is ignored otherwise.
  703. @item @code{synchronous}
  704. If this flag is set, the @code{starpu_task_submit} function is blocking and
  705. returns only when the task has been executed (or if no worker is able to
  706. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  707. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  708. This field indicates a level of priority for the task. This is an integer value
  709. that must be set between the return values of the
  710. @code{starpu_sched_get_min_priority} function for the least important tasks,
  711. and that of the @code{starpu_sched_get_max_priority} for the most important
  712. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  713. are provided for convenience and respectively returns value of
  714. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  715. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  716. order to allow static task initialization. Scheduling strategies that take
  717. priorities into account can use this parameter to take better scheduling
  718. decisions, but the scheduling policy may also ignore it.
  719. @item @code{execute_on_a_specific_worker} (default: @code{0})
  720. If this flag is set, StarPU will bypass the scheduler and directly affect this
  721. task to the worker specified by the @code{workerid} field.
  722. @item @code{workerid} (optional)
  723. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  724. which is the identifier of the worker that should process this task (as
  725. returned by @code{starpu_worker_get_id}). This field is ignored if
  726. @code{execute_on_a_specific_worker} field is set to 0.
  727. @item @code{detach} (optional) (default: @code{1})
  728. If this flag is set, it is not possible to synchronize with the task
  729. by the means of @code{starpu_task_wait} later on. Internal data structures
  730. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  731. flag is not set.
  732. @item @code{destroy} (optional) (default: @code{1})
  733. If this flag is set, the task structure will automatically be freed, either
  734. after the execution of the callback if the task is detached, or during
  735. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  736. allocated data structures will not be freed until @code{starpu_task_destroy} is
  737. called explicitly. Setting this flag for a statically allocated task structure
  738. will result in undefined behaviour.
  739. @item @code{predicted} (output field)
  740. Predicted duration of the task. This field is only set if the scheduling
  741. strategy used performance models.
  742. @end table
  743. @end deftp
  744. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  745. Initialize @var{task} with default values. This function is implicitly
  746. called by @code{starpu_task_create}. By default, tasks initialized with
  747. @code{starpu_task_init} must be deinitialized explicitly with
  748. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  749. constant @code{STARPU_TASK_INITIALIZER}.
  750. @end deftypefun
  751. @deftypefun {struct starpu_task *} starpu_task_create (void)
  752. Allocate a task structure and initialize it with default values. Tasks
  753. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  754. task is terminated. If the destroy flag is explicitly unset, the resources used
  755. by the task are freed by calling
  756. @code{starpu_task_destroy}.
  757. @end deftypefun
  758. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  759. Release all the structures automatically allocated to execute @var{task}. This is
  760. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  761. freed. This should be used for statically allocated tasks for instance.
  762. @end deftypefun
  763. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  764. Free the resource allocated during @code{starpu_task_create} and
  765. associated with @var{task}. This function can be called automatically
  766. after the execution of a task by setting the @code{destroy} flag of the
  767. @code{starpu_task} structure (default behaviour). Calling this function
  768. on a statically allocated task results in an undefined behaviour.
  769. @end deftypefun
  770. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  771. This function blocks until @var{task} has been executed. It is not possible to
  772. synchronize with a task more than once. It is not possible to wait for
  773. synchronous or detached tasks.
  774. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  775. indicates that the specified task was either synchronous or detached.
  776. @end deftypefun
  777. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  778. This function submits @var{task} to StarPU. Calling this function does
  779. not mean that the task will be executed immediately as there can be data or task
  780. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  781. scheduling this task with respect to such dependencies.
  782. This function returns immediately if the @code{synchronous} field of the
  783. @code{starpu_task} structure was set to 0, and block until the termination of
  784. the task otherwise. It is also possible to synchronize the application with
  785. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  786. function for instance.
  787. In case of success, this function returns 0, a return value of @code{-ENODEV}
  788. means that there is no worker able to process this task (e.g. there is no GPU
  789. available and this task is only implemented for CUDA devices).
  790. @end deftypefun
  791. @deftypefun int starpu_task_wait_for_all (void)
  792. This function blocks until all the tasks that were submitted are terminated.
  793. @end deftypefun
  794. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  795. This function returns the task currently executed by the worker, or
  796. NULL if it is called either from a thread that is not a task or simply
  797. because there is no task being executed at the moment.
  798. @end deftypefun
  799. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  800. Output on @code{stderr} some statistics on the codelet @var{cl}.
  801. @end deftypefun
  802. @c Callbacks : what can we put in callbacks ?
  803. @node Explicit Dependencies
  804. @section Explicit Dependencies
  805. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  806. Declare task dependencies between a @var{task} and an array of tasks of length
  807. @var{ndeps}. This function must be called prior to the submission of the task,
  808. but it may called after the submission or the execution of the tasks in the
  809. array provided the tasks are still valid (ie. they were not automatically
  810. destroyed). Calling this function on a task that was already submitted or with
  811. an entry of @var{task_array} that is not a valid task anymore results in an
  812. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  813. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  814. same task, in this case, the dependencies are added. It is possible to have
  815. redundancy in the task dependencies.
  816. @end deftypefun
  817. @deftp {Data Type} {starpu_tag}
  818. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  819. dependencies between tasks by the means of those tags. To do so, fill the
  820. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  821. be arbitrary) and set the @code{use_tag} field to 1.
  822. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  823. not be started until the tasks which holds the declared dependency tags are
  824. completed.
  825. @end deftp
  826. @deftypefun void starpu_tag_declare_deps (starpu_tag @var{id}, unsigned @var{ndeps}, ...)
  827. Specify the dependencies of the task identified by tag @code{id}. The first
  828. argument specifies the tag which is configured, the second argument gives the
  829. number of tag(s) on which @code{id} depends. The following arguments are the
  830. tags which have to be terminated to unlock the task.
  831. This function must be called before the associated task is submitted to StarPU
  832. with @code{starpu_task_submit}.
  833. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  834. last arguments @emph{must} be of type @code{starpu_tag}: constant values
  835. typically need to be explicitly casted. Using the
  836. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  837. @cartouche
  838. @example
  839. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  840. starpu_tag_declare_deps((starpu_tag)0x1,
  841. 2, (starpu_tag)0x32, (starpu_tag)0x52);
  842. @end example
  843. @end cartouche
  844. @end deftypefun
  845. @deftypefun void starpu_tag_declare_deps_array (starpu_tag @var{id}, unsigned @var{ndeps}, {starpu_tag *}@var{array})
  846. This function is similar to @code{starpu_tag_declare_deps}, except
  847. that its does not take a variable number of arguments but an array of
  848. tags of size @code{ndeps}.
  849. @cartouche
  850. @example
  851. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  852. starpu_tag tag_array[2] = @{0x32, 0x52@};
  853. starpu_tag_declare_deps_array((starpu_tag)0x1, 2, tag_array);
  854. @end example
  855. @end cartouche
  856. @end deftypefun
  857. @deftypefun void starpu_tag_wait (starpu_tag @var{id})
  858. This function blocks until the task associated to tag @var{id} has been
  859. executed. This is a blocking call which must therefore not be called within
  860. tasks or callbacks, but only from the application directly. It is possible to
  861. synchronize with the same tag multiple times, as long as the
  862. @code{starpu_tag_remove} function is not called. Note that it is still
  863. possible to synchronize with a tag associated to a task which @code{starpu_task}
  864. data structure was freed (e.g. if the @code{destroy} flag of the
  865. @code{starpu_task} was enabled).
  866. @end deftypefun
  867. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag *@var{id})
  868. This function is similar to @code{starpu_tag_wait} except that it blocks until
  869. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  870. terminated.
  871. @end deftypefun
  872. @deftypefun void starpu_tag_remove (starpu_tag @var{id})
  873. This function releases the resources associated to tag @var{id}. It can be
  874. called once the corresponding task has been executed and when there is
  875. no other tag that depend on this tag anymore.
  876. @end deftypefun
  877. @deftypefun void starpu_tag_notify_from_apps (starpu_tag @var{id})
  878. This function explicitly unlocks tag @var{id}. It may be useful in the
  879. case of applications which execute part of their computation outside StarPU
  880. tasks (e.g. third-party libraries). It is also provided as a
  881. convenient tool for the programmer, for instance to entirely construct the task
  882. DAG before actually giving StarPU the opportunity to execute the tasks.
  883. @end deftypefun
  884. @node Implicit Data Dependencies
  885. @section Implicit Data Dependencies
  886. In this section, we describe how StarPU makes it possible to insert implicit
  887. task dependencies in order to enforce sequential data consistency. When this
  888. data consistency is enabled on a specific data handle, any data access will
  889. appear as sequentially consistent from the application. For instance, if the
  890. application submits two tasks that access the same piece of data in read-only
  891. mode, and then a third task that access it in write mode, dependencies will be
  892. added between the two first tasks and the third one. Implicit data dependencies
  893. are also inserted in the case of data accesses from the application.
  894. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  895. Set the default sequential consistency flag. If a non-zero value is passed, a
  896. sequential data consistency will be enforced for all handles registered after
  897. this function call, otherwise it is disabled. By default, StarPU enables
  898. sequential data consistency. It is also possible to select the data consistency
  899. mode of a specific data handle with the
  900. @code{starpu_data_set_sequential_consistency_flag} function.
  901. @end deftypefun
  902. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  903. Return the default sequential consistency flag
  904. @end deftypefun
  905. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  906. This function returns the current default sequential consistency flag.
  907. @end deftypefun
  908. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  909. Sets the data consistency mode associated to a data handle. The consistency
  910. mode set using this function has the priority over the default mode which can
  911. be set with @code{starpu_data_set_sequential_consistency_flag}.
  912. @end deftypefun
  913. @node Performance Model API
  914. @section Performance Model API
  915. @deftp {Data Type} {enum starpu_perf_archtype}
  916. TODO.
  917. The different values are:
  918. @table @asis
  919. @item @code{STARPU_CPU_DEFAULT}
  920. @item @code{STARPU_CUDA_DEFAULT}
  921. @item @code{STARPU_OPENCL_DEFAULT}
  922. @item @code{STARPU_GORDON_DEFAULT}
  923. @end table
  924. @end deftp
  925. @deftp {Data Type} {struct starpu_perfmodel}
  926. TODO
  927. @end deftp
  928. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  929. TODO
  930. @end deftypefun
  931. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  932. TODO
  933. @end deftypefun
  934. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  935. TODO
  936. @end deftypefun
  937. @deftypefun void starpu_force_bus_sampling (void)
  938. This forces sampling the bus performance model again.
  939. @end deftypefun
  940. @node Profiling API
  941. @section Profiling API
  942. @deftypefun int starpu_profiling_status_set (int @var{status})
  943. Thie function sets the profiling status. Profiling is activated by passing
  944. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  945. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  946. resets all profiling measurements. When profiling is enabled, the
  947. @code{profiling_info} field of the @code{struct starpu_task} structure points
  948. to a valid @code{struct starpu_task_profiling_info} structure containing
  949. information about the execution of the task.
  950. Negative return values indicate an error, otherwise the previous status is
  951. returned.
  952. @end deftypefun
  953. @deftypefun int starpu_profiling_status_get (void)
  954. Return the current profiling status or a negative value in case there was an error.
  955. @end deftypefun
  956. @deftp {Data Type} {struct starpu_task_profiling_info}
  957. This structure contains information about the execution of a task. It is
  958. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  959. structure if profiling was enabled. The different fields are:
  960. @table @asis
  961. @item @code{submit_time}
  962. Date of task submission (relative to the initialization of StarPU).
  963. @item @code{start_time}
  964. Date of task execution beginning (relative to the initialization of StarPU).
  965. @item @code{end_time}
  966. Date of task execution termination (relative to the initialization of StarPU).
  967. @item @code{workerid}
  968. Identifier of the worker which has executed the task.
  969. @end table
  970. @end deftp
  971. @deftp {Data Type} {struct starpu_worker_profiling_info}
  972. This structure contains the profiling information associated to a
  973. worker. The different fields are:
  974. @table @asis
  975. @item @code{start_time}
  976. Starting date for the reported profiling measurements.
  977. @item @code{total_time}
  978. Duration of the profiling measurement interval.
  979. @item @code{executing_time}
  980. Time spent by the worker to execute tasks during the profiling measurement interval.
  981. @item @code{sleeping_time}
  982. Time spent idling by the worker during the profiling measurement interval.
  983. @item @code{executed_tasks}
  984. Number of tasks executed by the worker during the profiling measurement interval.
  985. @end table
  986. @end deftp
  987. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  988. Get the profiling info associated to the worker identified by @code{workerid},
  989. and reset the profiling measurements. If the @code{worker_info} argument is
  990. NULL, only reset the counters associated to worker @code{workerid}.
  991. Upon successful completion, this function returns 0. Otherwise, a negative
  992. value is returned.
  993. @end deftypefun
  994. @deftp {Data Type} {struct starpu_bus_profiling_info}
  995. TODO. The different fields are:
  996. @table @asis
  997. @item @code{start_time}
  998. TODO
  999. @item @code{total_time}
  1000. TODO
  1001. @item @code{transferred_bytes}
  1002. TODO
  1003. @item @code{transfer_count}
  1004. TODO
  1005. @end table
  1006. @end deftp
  1007. @deftypefun int starpu_bus_get_count (void)
  1008. TODO
  1009. @end deftypefun
  1010. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1011. TODO
  1012. @end deftypefun
  1013. @deftypefun int starpu_bus_get_src (int @var{busid})
  1014. TODO
  1015. @end deftypefun
  1016. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1017. TODO
  1018. @end deftypefun
  1019. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1020. TODO
  1021. @end deftypefun
  1022. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1023. TODO
  1024. @end deftypefun
  1025. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1026. TODO
  1027. @end deftypefun
  1028. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1029. TODO
  1030. @end deftypefun
  1031. @node CUDA extensions
  1032. @section CUDA extensions
  1033. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  1034. This function gets the current worker's CUDA stream.
  1035. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1036. function is only provided for convenience so that programmers can easily use
  1037. asynchronous operations within codelets without having to create a stream by
  1038. hand. Note that the application is not forced to use the stream provided by
  1039. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1040. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1041. the likelihood of having all transfers overlapped.
  1042. @end deftypefun
  1043. @deftypefun void starpu_helper_cublas_init (void)
  1044. This function initializes CUBLAS on every CUDA device.
  1045. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1046. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1047. controlled by StarPU. This call blocks until CUBLAS has been properly
  1048. initialized on every device.
  1049. @end deftypefun
  1050. @deftypefun void starpu_helper_cublas_shutdown (void)
  1051. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1052. @end deftypefun
  1053. @node OpenCL extensions
  1054. @section OpenCL extensions
  1055. @menu
  1056. * Writing OpenCL kernels:: Writing OpenCL kernels
  1057. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1058. * Loading OpenCL kernels:: Loading OpenCL kernels
  1059. * OpenCL statistics:: Collecting statistics from OpenCL
  1060. @end menu
  1061. @node Writing OpenCL kernels
  1062. @subsection Writing OpenCL kernels
  1063. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1064. todo
  1065. @end deftypefun
  1066. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1067. todo
  1068. @end deftypefun
  1069. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1070. todo
  1071. @end deftypefun
  1072. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1073. todo
  1074. @end deftypefun
  1075. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue});
  1076. todo
  1077. @end deftypefun
  1078. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1079. todo
  1080. @end deftypefun
  1081. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1082. todo
  1083. @end deftypefun
  1084. @node Compiling OpenCL kernels
  1085. @subsection Compiling OpenCL kernels
  1086. Source codes for OpenCL kernels can be stored in a file or in a
  1087. string. StarPU provides functions to build the program executable for
  1088. each available OpenCL device as a @code{cl_program} object. This
  1089. program executable can then be loaded within a specific queue as
  1090. explained in the next section. These are only helpers, Applications
  1091. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1092. use (e.g. different programs on the different OpenCL devices, for
  1093. relocation purpose for instance).
  1094. @deftp {Data Type} {struct starpu_opencl_program}
  1095. todo
  1096. @end deftp
  1097. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1098. @anchor{starpu_opencl_load_opencl_from_file}
  1099. This function compiles an OpenCL source code stored in a file.
  1100. @end deftypefun
  1101. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1102. This function compiles an OpenCL source code stored in a string.
  1103. @end deftypefun
  1104. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1105. This function unloads an OpenCL compiled code.
  1106. @end deftypefun
  1107. @node Loading OpenCL kernels
  1108. @subsection Loading OpenCL kernels
  1109. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  1110. TODO
  1111. @end deftypefun
  1112. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1113. TODO
  1114. @end deftypefun
  1115. @node OpenCL statistics
  1116. @subsection OpenCL statistics
  1117. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1118. This function allows to collect statistics on a kernel execution.
  1119. After termination of the kernels, the OpenCL codelet should call this function
  1120. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1121. collect statistics about the kernel execution (used cycles, consumed power).
  1122. @end deftypefun
  1123. @node Cell extensions
  1124. @section Cell extensions
  1125. nothing yet.
  1126. @node Miscellaneous helpers
  1127. @section Miscellaneous helpers
  1128. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1129. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1130. The @var{asynchronous} parameter indicates whether the function should
  1131. block or not. In the case of an asynchronous call, it is possible to
  1132. synchronize with the termination of this operation either by the means of
  1133. implicit dependencies (if enabled) or by calling
  1134. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1135. this callback function is executed after the handle has been copied, and it is
  1136. given the @var{callback_arg} pointer as argument.
  1137. @end deftypefun
  1138. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1139. This function executes the given function on a subset of workers.
  1140. When calling this method, the offloaded function specified by the first argument is
  1141. executed by every StarPU worker that may execute the function.
  1142. The second argument is passed to the offloaded function.
  1143. The last argument specifies on which types of processing units the function
  1144. should be executed. Similarly to the @var{where} field of the
  1145. @code{starpu_codelet} structure, it is possible to specify that the function
  1146. should be executed on every CUDA device and every CPU by passing
  1147. @code{STARPU_CPU|STARPU_CUDA}.
  1148. This function blocks until the function has been executed on every appropriate
  1149. processing units, so that it may not be called from a callback function for
  1150. instance.
  1151. @end deftypefun