starpu.texi 159 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect..
  487. @node Execution of Hello World
  488. @subsection Execution of Hello World
  489. @smallexample
  490. % make hello_world
  491. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  492. % ./hello_world
  493. Hello world (params = @{1, 2.000000@} )
  494. Callback function (arg 42)
  495. @end smallexample
  496. @node Scaling a Vector
  497. @section Manipulating Data: Scaling a Vector
  498. The previous example has shown how to submit tasks. In this section,
  499. we show how StarPU tasks can manipulate data. The full source code for
  500. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  501. @menu
  502. * Source code of Vector Scaling::
  503. * Execution of Vector Scaling::
  504. @end menu
  505. @node Source code of Vector Scaling
  506. @subsection Source code of Vector Scaling
  507. Programmers can describe the data layout of their application so that StarPU is
  508. responsible for enforcing data coherency and availability across the machine.
  509. Instead of handling complex (and non-portable) mechanisms to perform data
  510. movements, programmers only declare which piece of data is accessed and/or
  511. modified by a task, and StarPU makes sure that when a computational kernel
  512. starts somewhere (e.g. on a GPU), its data are available locally.
  513. Before submitting those tasks, the programmer first needs to declare the
  514. different pieces of data to StarPU using the @code{starpu_*_data_register}
  515. functions. To ease the development of applications for StarPU, it is possible
  516. to describe multiple types of data layout. A type of data layout is called an
  517. @b{interface}. There are different predefined interfaces available in StarPU:
  518. here we will consider the @b{vector interface}.
  519. The following lines show how to declare an array of @code{NX} elements of type
  520. @code{float} using the vector interface:
  521. @cartouche
  522. @smallexample
  523. float vector[NX];
  524. starpu_data_handle vector_handle;
  525. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  526. sizeof(vector[0]));
  527. @end smallexample
  528. @end cartouche
  529. The first argument, called the @b{data handle}, is an opaque pointer which
  530. designates the array in StarPU. This is also the structure which is used to
  531. describe which data is used by a task. The second argument is the node number
  532. where the data originally resides. Here it is 0 since the @code{vector} array is in
  533. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  534. the number of elements in the vector and the size of each element.
  535. The following shows how to construct a StarPU task that will manipulate the
  536. vector and a constant factor.
  537. @cartouche
  538. @smallexample
  539. float factor = 3.14;
  540. struct starpu_task *task = starpu_task_create();
  541. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  542. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  543. task->buffers[0].mode = STARPU_RW;
  544. task->cl_arg = &factor;
  545. task->cl_arg_size = sizeof(factor);
  546. task->synchronous = 1;
  547. starpu_task_submit(task);
  548. @end smallexample
  549. @end cartouche
  550. Since the factor is a mere constant float value parameter,
  551. it does not need a preliminary registration, and
  552. can just be passed through the @code{cl_arg} pointer like in the previous
  553. example. The vector parameter is described by its handle.
  554. There are two fields in each element of the @code{buffers} array.
  555. @code{handle} is the handle of the data, and @code{mode} specifies how the
  556. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  557. write-only and @code{STARPU_RW} for read and write access).
  558. The definition of the codelet can be written as follows:
  559. @cartouche
  560. @smallexample
  561. void scal_cpu_func(void *buffers[], void *cl_arg)
  562. @{
  563. unsigned i;
  564. float *factor = cl_arg;
  565. /* length of the vector */
  566. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  567. /* local copy of the vector pointer */
  568. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  569. for (i = 0; i < n; i++)
  570. val[i] *= *factor;
  571. @}
  572. starpu_codelet cl = @{
  573. .where = STARPU_CPU,
  574. .cpu_func = scal_cpu_func,
  575. .nbuffers = 1
  576. @};
  577. @end smallexample
  578. @end cartouche
  579. The first argument is an array that gives
  580. a description of all the buffers passed in the @code{task->buffers}@ array. The
  581. size of this array is given by the @code{nbuffers} field of the codelet
  582. structure. For the sake of genericity, this array contains pointers to the
  583. different interfaces describing each buffer. In the case of the @b{vector
  584. interface}, the location of the vector (resp. its length) is accessible in the
  585. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  586. read-write fashion, any modification will automatically affect future accesses
  587. to this vector made by other tasks.
  588. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  589. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  590. constant factor from this pointer.
  591. @node Execution of Vector Scaling
  592. @subsection Execution of Vector Scaling
  593. @smallexample
  594. % make vector_scal
  595. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  596. % ./vector_scal
  597. 0.000000 3.000000 6.000000 9.000000 12.000000
  598. @end smallexample
  599. @node Vector Scaling on an Hybrid CPU/GPU Machine
  600. @section Vector Scaling on an Hybrid CPU/GPU Machine
  601. Contrary to the previous examples, the task submitted in this example may not
  602. only be executed by the CPUs, but also by a CUDA device.
  603. @menu
  604. * Definition of the CUDA Kernel::
  605. * Definition of the OpenCL Kernel::
  606. * Definition of the Main Code::
  607. * Execution of Hybrid Vector Scaling::
  608. @end menu
  609. @node Definition of the CUDA Kernel
  610. @subsection Definition of the CUDA Kernel
  611. The CUDA implementation can be written as follows. It needs to be
  612. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  613. driver.
  614. @cartouche
  615. @smallexample
  616. #include <starpu.h>
  617. static __global__ void vector_mult_cuda(float *val, unsigned n,
  618. float factor)
  619. @{
  620. unsigned i;
  621. if (i < n)
  622. val[i] *= factor;
  623. @}
  624. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  625. @{
  626. float *factor = (float *)_args;
  627. /* length of the vector */
  628. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  629. /* local copy of the vector pointer */
  630. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  631. unsigned threads_per_block = 64;
  632. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  633. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  634. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  635. @}
  636. @end smallexample
  637. @end cartouche
  638. @node Definition of the OpenCL Kernel
  639. @subsection Definition of the OpenCL Kernel
  640. The OpenCL implementation can be written as follows. StarPU provides
  641. tools to compile a OpenCL kernel stored in a file.
  642. @cartouche
  643. @smallexample
  644. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  645. @{
  646. const int i = get_global_id(0);
  647. if (i < nx) @{
  648. val[i] *= factor;
  649. @}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @cartouche
  654. @smallexample
  655. #include <starpu.h>
  656. @i{#include <starpu_opencl.h>}
  657. @i{extern struct starpu_opencl_program programs;}
  658. void scal_opencl_func(void *buffers[], void *_args)
  659. @{
  660. float *factor = _args;
  661. @i{ int id, devid, err;}
  662. @i{ cl_kernel kernel;}
  663. @i{ cl_command_queue queue;}
  664. @i{ cl_event event;}
  665. /* length of the vector */
  666. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  667. /* local copy of the vector pointer */
  668. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  669. @i{ id = starpu_worker_get_id();}
  670. @i{ devid = starpu_worker_get_devid(id);}
  671. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  672. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  673. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  674. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  675. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  676. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  677. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ @{}
  679. @i{ size_t global=1;}
  680. @i{ size_t local=1;}
  681. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @}}
  684. @i{ clFinish(queue);}
  685. @i{ starpu_opencl_collect_stats(event);}
  686. @i{ clReleaseEvent(event);}
  687. @i{ starpu_opencl_release_kernel(kernel);}
  688. @}
  689. @end smallexample
  690. @end cartouche
  691. @node Definition of the Main Code
  692. @subsection Definition of the Main Code
  693. The CPU implementation is the same as in the previous section.
  694. Here is the source of the main application. You can notice the value of the
  695. field @code{where} for the codelet. We specify
  696. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  697. can be executed either on a CPU or on a CUDA or an OpenCL device.
  698. @cartouche
  699. @smallexample
  700. #include <starpu.h>
  701. #define NX 2048
  702. extern void scal_cuda_func(void *buffers[], void *_args);
  703. extern void scal_cpu_func(void *buffers[], void *_args);
  704. extern void scal_opencl_func(void *buffers[], void *_args);
  705. /* @b{Definition of the codelet} */
  706. static starpu_codelet cl = @{
  707. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  708. /* @b{on a CUDA device, or on an OpenCL device} */
  709. .cuda_func = scal_cuda_func;
  710. .cpu_func = scal_cpu_func;
  711. .opencl_func = scal_opencl_func;
  712. .nbuffers = 1;
  713. @}
  714. #ifdef STARPU_USE_OPENCL
  715. /* @b{The compiled version of the OpenCL program} */
  716. struct starpu_opencl_program programs;
  717. #endif
  718. int main(int argc, char **argv)
  719. @{
  720. float *vector;
  721. int i, ret;
  722. float factor=3.0;
  723. struct starpu_task *task;
  724. starpu_data_handle vector_handle;
  725. starpu_init(NULL); /* @b{Initialising StarPU} */
  726. #ifdef STARPU_USE_OPENCL
  727. starpu_opencl_load_opencl_from_file(
  728. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  729. #endif
  730. vector = malloc(NX*sizeof(vector[0]));
  731. assert(vector);
  732. for(i=0 ; i<NX ; i++) vector[i] = i;
  733. @end smallexample
  734. @end cartouche
  735. @cartouche
  736. @smallexample
  737. /* @b{Registering data within StarPU} */
  738. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  739. NX, sizeof(vector[0]));
  740. /* @b{Definition of the task} */
  741. task = starpu_task_create();
  742. task->cl = &cl;
  743. task->buffers[0].handle = vector_handle;
  744. task->buffers[0].mode = STARPU_RW;
  745. task->cl_arg = &factor;
  746. task->cl_arg_size = sizeof(factor);
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Submitting the task} */
  752. ret = starpu_task_submit(task);
  753. if (ret == -ENODEV) @{
  754. fprintf(stderr, "No worker may execute this task\n");
  755. return 1;
  756. @}
  757. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  758. /* @b{Waiting for its termination} */
  759. starpu_task_wait_for_all();
  760. /* @b{Update the vector in RAM} */
  761. starpu_data_acquire(vector_handle, STARPU_R);
  762. @end smallexample
  763. @end cartouche
  764. @cartouche
  765. @smallexample
  766. /* @b{Access the data} */
  767. for(i=0 ; i<NX; i++) @{
  768. fprintf(stderr, "%f ", vector[i]);
  769. @}
  770. fprintf(stderr, "\n");
  771. /* @b{Release the data and shutdown StarPU} */
  772. starpu_data_release(vector_handle);
  773. starpu_shutdown();
  774. return 0;
  775. @}
  776. @end smallexample
  777. @end cartouche
  778. @node Execution of Hybrid Vector Scaling
  779. @subsection Execution of Hybrid Vector Scaling
  780. The Makefile given at the beginning of the section must be extended to
  781. give the rules to compile the CUDA source code. Note that the source
  782. file of the OpenCL kernel does not need to be compiled now, it will
  783. be compiled at run-time when calling the function
  784. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  785. @cartouche
  786. @smallexample
  787. CFLAGS += $(shell pkg-config --cflags libstarpu)
  788. LDFLAGS += $(shell pkg-config --libs libstarpu)
  789. CC = gcc
  790. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  791. %.o: %.cu
  792. nvcc $(CFLAGS) $< -c $@
  793. clean:
  794. rm -f vector_scal *.o
  795. @end smallexample
  796. @end cartouche
  797. @smallexample
  798. % make
  799. @end smallexample
  800. and to execute it, with the default configuration:
  801. @smallexample
  802. % ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or for example, by disabling CPU devices:
  806. @smallexample
  807. % STARPU_NCPUS=0 ./vector_scal
  808. 0.000000 3.000000 6.000000 9.000000 12.000000
  809. @end smallexample
  810. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  811. see @ref{Using accelerators}):
  812. @smallexample
  813. % STARPU_NCUDA=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. @node Task and Worker Profiling
  817. @section Task and Worker Profiling
  818. A full example showing how to use the profiling API is available in
  819. the StarPU sources in the directory @code{examples/profiling/}.
  820. @cartouche
  821. @smallexample
  822. struct starpu_task *task = starpu_task_create();
  823. task->cl = &cl;
  824. task->synchronous = 1;
  825. /* We will destroy the task structure by hand so that we can
  826. * query the profiling info before the task is destroyed. */
  827. task->destroy = 0;
  828. /* Submit and wait for completion (since synchronous was set to 1) */
  829. starpu_task_submit(task);
  830. /* The task is finished, get profiling information */
  831. struct starpu_task_profiling_info *info = task->profiling_info;
  832. /* How much time did it take before the task started ? */
  833. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  834. /* How long was the task execution ? */
  835. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  836. /* We don't need the task structure anymore */
  837. starpu_task_destroy(task);
  838. @end smallexample
  839. @end cartouche
  840. @cartouche
  841. @smallexample
  842. /* Display the occupancy of all workers during the test */
  843. int worker;
  844. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  845. @{
  846. struct starpu_worker_profiling_info worker_info;
  847. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  848. STARPU_ASSERT(!ret);
  849. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  850. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  851. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  852. float executing_ratio = 100.0*executing_time/total_time;
  853. float sleeping_ratio = 100.0*sleeping_time/total_time;
  854. char workername[128];
  855. starpu_worker_get_name(worker, workername, 128);
  856. fprintf(stderr, "Worker %s:\n", workername);
  857. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  858. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  859. executing_ratio);
  860. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  861. sleeping_ratio);
  862. @}
  863. @end smallexample
  864. @end cartouche
  865. @node Partitioning Data
  866. @section Partitioning Data
  867. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  868. @cartouche
  869. @smallexample
  870. int vector[NX];
  871. starpu_data_handle handle;
  872. /* Declare data to StarPU */
  873. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  874. /* Partition the vector in PARTS sub-vectors */
  875. starpu_filter f =
  876. @{
  877. .filter_func = starpu_block_filter_func_vector,
  878. .nchildren = PARTS,
  879. .get_nchildren = NULL,
  880. .get_child_ops = NULL
  881. @};
  882. starpu_data_partition(handle, &f);
  883. @end smallexample
  884. @end cartouche
  885. @cartouche
  886. @smallexample
  887. /* Submit a task on each sub-vector */
  888. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  889. /* Get subdata number i (there is only 1 dimension) */
  890. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  891. struct starpu_task *task = starpu_task_create();
  892. task->buffers[0].handle = sub_handle;
  893. task->buffers[0].mode = STARPU_RW;
  894. task->cl = &cl;
  895. task->synchronous = 1;
  896. task->cl_arg = &factor;
  897. task->cl_arg_size = sizeof(factor);
  898. starpu_task_submit(task);
  899. @}
  900. @end smallexample
  901. @end cartouche
  902. Partitioning can be applied several times, see
  903. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  904. @node Performance model example
  905. @section Performance model example
  906. To achieve good scheduling, StarPU scheduling policies need to be able to
  907. estimate in advance the duration of a task. This is done by giving to codelets a
  908. performance model. There are several kinds of performance models.
  909. @itemize
  910. @item
  911. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  912. see for instance
  913. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  914. @item
  915. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  916. given set of data input/output sizes, the performance will always be about the
  917. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  918. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  919. few different sets of data input/output sizes. StarPU will then keep record of
  920. the average time of previous executions on the various processing units, and use
  921. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  922. for further executions. The following is a small code example.
  923. @cartouche
  924. @smallexample
  925. static struct starpu_perfmodel_t mult_perf_model = @{
  926. .type = STARPU_HISTORY_BASED,
  927. .symbol = "mult_perf_model"
  928. @};
  929. starpu_codelet cl = @{
  930. .where = STARPU_CPU,
  931. .cpu_func = cpu_mult,
  932. .nbuffers = 3,
  933. /* for the scheduling policy to be able to use performance models */
  934. .model = &mult_perf_model
  935. @};
  936. @end smallexample
  937. @end cartouche
  938. @item
  939. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  940. type). This still assumes performance regularity, but can work with various data
  941. input sizes, by applying a*n^b+c regression over observed execution times.
  942. @end itemize
  943. The same can be done for task power consumption estimation, by setting the
  944. @code{power_model} field the same way as the @code{model} field. Note: for
  945. now, the application has to give to the power consumption performance model
  946. a different name.
  947. @node Theoretical lower bound on execution time
  948. @section Theoretical lower bound on execution time
  949. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  950. bound for the execution time of a whole set of tasks. See for
  951. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  952. call @code{starpu_bound_start}, and after complete execution, call
  953. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  954. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  955. problem corresponding to the schedule of your tasks. Run it through
  956. @code{lp_solve} or any other linear programming solver, and that will give you a
  957. lower bound for the total execution time of your tasks. If StarPU was compiled
  958. with the glpk library installed, @code{starpu_bound_compute} can be used to
  959. solve it immediately and get the optimized minimum. Its @code{integer}
  960. parameter allows to decide whether integer resolution should be computed
  961. and returned.
  962. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  963. dependencies into account. It must be understood that the linear programming
  964. problem size is quadratic with the number of tasks and thus the time to solve it
  965. will be very long, it could be minutes for just a few dozen tasks. You should
  966. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  967. problem to MPS format and then use a better solver, @code{glpsol} might be
  968. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  969. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  970. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  971. of @code{lp_solve}. For instance, we often just use
  972. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  973. the @code{-gr} option can also be quite useful.
  974. Setting @code{deps} to 0 will only take into account the actual computations
  975. on processing units. It however still properly takes into account the varying
  976. performances of kernels and processing units, which is quite more accurate than
  977. just comparing StarPU performances with the fastest of the kernels being used.
  978. The @code{prio} parameter tells StarPU whether to simulate taking into account
  979. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  980. tasks before less prioritized tasks, to check to which extend this results
  981. to a less optimal solution. This increases even more computation time.
  982. Note that for simplicity, all this however doesn't take into account data
  983. transfers, which are assumed to be completely overlapped.
  984. @node Insert Task Utility
  985. @section Insert Task Utility
  986. StarPU provides the function @code{starpu_insert_task} to ease the
  987. creation and submission of tasks.
  988. @emph{Prototype}:
  989. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  990. The arguments following the codelets can be of the following types:
  991. @itemize
  992. @item
  993. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  994. @item
  995. @code{STARPU_VALUE} followed by a pointer to the constant value and
  996. the size of the constant;
  997. @item
  998. @code{STARPU_CALLBACK} followed by pointer to a function;
  999. @item
  1000. @code{STARPU_CALLBACK_ARG} followed by a pointer;
  1001. @item
  1002. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1003. @end itemize
  1004. A call to @code{starpu_insert_task} will create and submit the task
  1005. based on the given arguments. The list of varying arguments has to be
  1006. ended by the value @code{0}.
  1007. Parameters to be passed to the codelet implementation are defined
  1008. through the type @code{STARPU_EXECUTE}. The function
  1009. @code{starpu_unpack_cl_args} must be called within the codelet
  1010. implementation to retrieve them.
  1011. Here the implementation of the codelet:
  1012. @smallexample
  1013. void func_cpu(void *descr[], void *_args)
  1014. @{
  1015. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1016. float *x1 = (int *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1017. int ifactor;
  1018. float ffactor;
  1019. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1020. *x0 = *x0 * ifactor;
  1021. *x1 = *x1 * ffactor;
  1022. @}
  1023. starpu_codelet mycodelet = @{
  1024. .where = STARPU_CPU,
  1025. .cpu_func = func_cpu,
  1026. .nbuffers = 2
  1027. @};
  1028. @end smallexample
  1029. And the call to the @code{starpu_insert_task} wrapper:
  1030. @smallexample
  1031. starpu_insert_task(&mycodelet,
  1032. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1033. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1034. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1035. 0);
  1036. @end smallexample
  1037. @node More examples
  1038. @section More examples
  1039. More examples are available in the StarPU sources in the @code{examples/}
  1040. directory. Simple examples include:
  1041. @table @asis
  1042. @item @code{incrementer/}:
  1043. Trivial incrementation test.
  1044. @item @code{basic_examples/}:
  1045. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1046. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1047. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1048. interface, and an example using the variable data interface.
  1049. @item @code{matvecmult/}:
  1050. OpenCL example from NVidia, adapted to StarPU.
  1051. @item @code{axpy/}:
  1052. AXPY CUBLAS operation adapted to StarPU.
  1053. @item @code{fortran/}:
  1054. Example of Fortran bindings.
  1055. @end table
  1056. More advanced examples include:
  1057. @table @asis
  1058. @item @code{filters/}:
  1059. Examples using filters, as shown in @ref{Partitioning Data}.
  1060. @item @code{lu/}:
  1061. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1062. @item @code{cholesky/}:
  1063. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1064. @end table
  1065. @c ---------------------------------------------------------------------
  1066. @c Performance options
  1067. @c ---------------------------------------------------------------------
  1068. @node Performance optimization
  1069. @chapter How to optimize performance with StarPU
  1070. TODO: improve!
  1071. @menu
  1072. * Data management::
  1073. * Task submission::
  1074. * Task scheduling policy::
  1075. * Task distribution vs Data transfer::
  1076. * Power-based scheduling::
  1077. * Profiling::
  1078. * CUDA-specific optimizations::
  1079. @end menu
  1080. Simply encapsulating application kernels into tasks already permits to
  1081. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1082. few additional changes are needed.
  1083. @node Data management
  1084. @section Data management
  1085. By default, StarPU does not enable data prefetching, because CUDA does
  1086. not announce when too many data transfers were scheduled and can thus block
  1087. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1088. .
  1089. By default, StarPU leaves replicates of data wherever they were used, in case they
  1090. will be re-used by other tasks, thus saving the data transfer time. When some
  1091. task modifies some data, all the other replicates are invalidated, and only the
  1092. processing unit will have a valid replicate of the data. If the application knows
  1093. that this data will not be re-used by further tasks, it should advise StarPU to
  1094. immediately replicate it to a desired list of memory nodes (given through a
  1095. bitmask). This can be understood like the write-through mode of CPU caches.
  1096. @example
  1097. starpu_data_set_wt_mask(img_handle, 1<<0);
  1098. @end example
  1099. will for instance request to always transfer a replicate into the main memory (node
  1100. 0), as bit 0 of the write-through bitmask is being set.
  1101. When the application allocates data, whenever possible it should use the
  1102. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1103. OpenCL to make the allocation itself and pin the corresponding allocated
  1104. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1105. transfer to overlap with computations.
  1106. @node Task submission
  1107. @section Task submission
  1108. To let StarPU make online optimizations, tasks should be submitted
  1109. asynchronously as much as possible. Ideally, all the tasks should be
  1110. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1111. termination. StarPU will then be able to rework the whole schedule, overlap
  1112. computation with communication, manage accelerator local memory usage, etc.
  1113. @node Task scheduling policy
  1114. @section Task scheduling policy
  1115. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1116. because it provides correct load balance even if the application codelets do not
  1117. have performance models. If your application codelets have performance models,
  1118. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1119. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1120. the list of available schedulers.
  1121. Most schedulers are based on an estimation of codelet duration on each kind
  1122. of processing unit. For this to be possible, the application programmer needs
  1123. to configure a performance model for the codelets of the application (see
  1124. @ref{Performance model example} for instance). History-based performance models
  1125. use on-line calibration. StarPU will automatically calibrate codelets
  1126. which have never been calibrated yet. To force continuing calibration, use
  1127. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1128. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1129. Note: due to CUDA limitations, to be able to measure kernel duration,
  1130. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1131. disables data transfer / computation overlapping, and should thus not be used
  1132. for eventual benchmarks.
  1133. @node Task distribution vs Data transfer
  1134. @section Task distribution vs Data transfer
  1135. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1136. thus needs to find a balance between both. The target function that the
  1137. @code{dmda} scheduler of StarPU
  1138. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1139. @code{T_execution} is the estimated execution time of the codelet (usually
  1140. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1141. latter is however estimated based on bus calibration before execution start,
  1142. i.e. with an idle machine. You can force bus re-calibration by running
  1143. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1144. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1145. This is of course imprecise, but in practice, a rough estimation already gives
  1146. the good results that a precise estimation would give.
  1147. @node Power-based scheduling
  1148. @section Power-based scheduling
  1149. If the application can provide some power performance model (through
  1150. the @code{power_model} field of the codelet structure), StarPU will
  1151. take it into account when distributing tasks. The target function that
  1152. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1153. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1154. is the estimated task consumption in Joules. To tune this parameter, use
  1155. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1156. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1157. alpha and beta to zero permits to only take into account power consumption.
  1158. This is however not sufficient to correctly optimize power: the scheduler would
  1159. simply tend to run all computations on the most energy-conservative processing
  1160. unit. To account for the consumption of the whole machine (including idle
  1161. processing units), the idle power of the machine should be given by setting
  1162. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1163. be obtained from the machine power supplier.
  1164. The power actually consumed by the total execution can be displayed by setting
  1165. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1166. @node Profiling
  1167. @section Profiling
  1168. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1169. calling @code{starpu_profiling_status_set} from the source code.
  1170. Statistics on the execution can then be obtained by using @code{export
  1171. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1172. stats will include an approximation of the number of executed tasks even if
  1173. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1174. execution did happen on accelerators without penalizing performance with
  1175. the profiling overhead. More details on performance feedback are provided by the
  1176. next chapter.
  1177. @node CUDA-specific optimizations
  1178. @section CUDA-specific optimizations
  1179. Due to CUDA limitations, StarPU will have a hard time overlapping
  1180. communications and computations if the application does not use a dedicated
  1181. CUDA stream for its computations. StarPU provides one by the use of
  1182. @code{starpu_cuda_get_local_stream()}. For instance:
  1183. @example
  1184. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1185. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1186. @end example
  1187. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1188. @c ---------------------------------------------------------------------
  1189. @c Performance feedback
  1190. @c ---------------------------------------------------------------------
  1191. @node Performance feedback
  1192. @chapter Performance feedback
  1193. @menu
  1194. * On-line:: On-line performance feedback
  1195. * Off-line:: Off-line performance feedback
  1196. * Codelet performance:: Performance of codelets
  1197. @end menu
  1198. @node On-line
  1199. @section On-line performance feedback
  1200. @menu
  1201. * Enabling monitoring:: Enabling on-line performance monitoring
  1202. * Task feedback:: Per-task feedback
  1203. * Codelet feedback:: Per-codelet feedback
  1204. * Worker feedback:: Per-worker feedback
  1205. * Bus feedback:: Bus-related feedback
  1206. @end menu
  1207. @node Enabling monitoring
  1208. @subsection Enabling on-line performance monitoring
  1209. In order to enable online performance monitoring, the application can call
  1210. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1211. detect whether monitoring is already enabled or not by calling
  1212. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1213. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1214. can also be set to 1 to achieve the same effect.
  1215. Likewise, performance monitoring is stopped by calling
  1216. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1217. does not reset the performance counters so that the application may consult
  1218. them later on.
  1219. More details about the performance monitoring API are available in section
  1220. @ref{Profiling API}.
  1221. @node Task feedback
  1222. @subsection Per-task feedback
  1223. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1224. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1225. structure when a task terminates.
  1226. This structure is automatically destroyed when the task structure is destroyed,
  1227. either automatically or by calling @code{starpu_task_destroy}.
  1228. The @code{starpu_task_profiling_info} structure indicates the date when the
  1229. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1230. terminated (@code{end_time}), relative to the initialization of
  1231. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1232. that has executed the task (@code{workerid}).
  1233. These date are stored as @code{timespec} structures which the user may convert
  1234. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1235. function.
  1236. It it worth noting that the application may directly access this structure from
  1237. the callback executed at the end of the task. The @code{starpu_task} structure
  1238. associated to the callback currently being executed is indeed accessible with
  1239. the @code{starpu_get_current_task()} function.
  1240. @node Codelet feedback
  1241. @subsection Per-codelet feedback
  1242. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1243. an array of counters. The i-th entry of the array is incremented every time a
  1244. task implementing the codelet is executed on the i-th worker.
  1245. This array is not reinitialized when profiling is enabled or disabled.
  1246. @node Worker feedback
  1247. @subsection Per-worker feedback
  1248. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1249. function is a @code{starpu_worker_profiling_info} structure that gives
  1250. statistics about the specified worker. This structure specifies when StarPU
  1251. started collecting profiling information for that worker (@code{start_time}),
  1252. the duration of the profiling measurement interval (@code{total_time}), the
  1253. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1254. because there is no task to execute at all (@code{sleeping_time}), and the
  1255. number of tasks that were executed while profiling was enabled.
  1256. These values give an estimation of the proportion of time spent do real work,
  1257. and the time spent either sleeping because there are not enough executable
  1258. tasks or simply wasted in pure StarPU overhead.
  1259. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1260. information associated to a worker.
  1261. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1262. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1263. generate a graphic showing the evolution of these values during the time, for
  1264. the different workers.
  1265. @node Bus feedback
  1266. @subsection Bus-related feedback
  1267. TODO
  1268. @c how to enable/disable performance monitoring
  1269. @c what kind of information do we get ?
  1270. @node Off-line
  1271. @section Off-line performance feedback
  1272. @menu
  1273. * Generating traces:: Generating traces with FxT
  1274. * Gantt diagram:: Creating a Gantt Diagram
  1275. * DAG:: Creating a DAG with graphviz
  1276. * starpu-top:: Monitoring activity
  1277. @end menu
  1278. @node Generating traces
  1279. @subsection Generating traces with FxT
  1280. StarPU can use the FxT library (see
  1281. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1282. with a limited runtime overhead.
  1283. You can either get the FxT library from CVS (autotools are required):
  1284. @example
  1285. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1286. % ./bootstrap
  1287. @end example
  1288. If autotools are not available on your machine, or if you prefer to do so,
  1289. FxT's code is also available as a tarball:
  1290. @example
  1291. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1292. @end example
  1293. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1294. done following the standard procedure:
  1295. @example
  1296. % ./configure --prefix=$FXTDIR
  1297. % make
  1298. % make install
  1299. @end example
  1300. In order to have StarPU to generate traces, StarPU should be configured with
  1301. the @code{--with-fxt} option:
  1302. @example
  1303. $ ./configure --with-fxt=$FXTDIR
  1304. @end example
  1305. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1306. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1307. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1308. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1309. @code{/tmp/} directory by default, or by the directory specified by
  1310. the @code{STARPU_FXT_PREFIX} environment variable.
  1311. @node Gantt diagram
  1312. @subsection Creating a Gantt Diagram
  1313. When the FxT trace file @code{filename} has been generated, it is possible to
  1314. generate a trace in the Paje format by calling:
  1315. @example
  1316. % starpu_fxt_tool -i filename
  1317. @end example
  1318. This will create a @code{paje.trace} file in the current directory that can be
  1319. inspected with the ViTE trace visualizing open-source tool. More information
  1320. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1321. possible to open the @code{paje.trace} file with ViTE by using the following
  1322. command:
  1323. @example
  1324. % vite paje.trace
  1325. @end example
  1326. @node DAG
  1327. @subsection Creating a DAG with graphviz
  1328. When the FxT trace file @code{filename} has been generated, it is possible to
  1329. generate a task graph in the DOT format by calling:
  1330. @example
  1331. $ starpu_fxt_tool -i filename
  1332. @end example
  1333. This will create a @code{dag.dot} file in the current directory. This file is a
  1334. task graph described using the DOT language. It is possible to get a
  1335. graphical output of the graph by using the graphviz library:
  1336. @example
  1337. $ dot -Tpdf dag.dot -o output.pdf
  1338. @end example
  1339. @node starpu-top
  1340. @subsection Monitoring activity
  1341. When the FxT trace file @code{filename} has been generated, it is possible to
  1342. generate a activity trace by calling:
  1343. @example
  1344. $ starpu_fxt_tool -i filename
  1345. @end example
  1346. This will create an @code{activity.data} file in the current
  1347. directory. A profile of the application showing the activity of StarPU
  1348. during the execution of the program can be generated:
  1349. @example
  1350. $ starpu_top.sh activity.data
  1351. @end example
  1352. This will create a file named @code{activity.eps} in the current directory.
  1353. This picture is composed of two parts.
  1354. The first part shows the activity of the different workers. The green sections
  1355. indicate which proportion of the time was spent executed kernels on the
  1356. processing unit. The red sections indicate the proportion of time spent in
  1357. StartPU: an important overhead may indicate that the granularity may be too
  1358. low, and that bigger tasks may be appropriate to use the processing unit more
  1359. efficiently. The black sections indicate that the processing unit was blocked
  1360. because there was no task to process: this may indicate a lack of parallelism
  1361. which may be alleviated by creating more tasks when it is possible.
  1362. The second part of the @code{activity.eps} picture is a graph showing the
  1363. evolution of the number of tasks available in the system during the execution.
  1364. Ready tasks are shown in black, and tasks that are submitted but not
  1365. schedulable yet are shown in grey.
  1366. @node Codelet performance
  1367. @section Performance of codelets
  1368. The performance model of codelets can be examined by using the
  1369. @code{starpu_perfmodel_display} tool:
  1370. @example
  1371. $ starpu_perfmodel_display -l
  1372. file: <malloc_pinned.hannibal>
  1373. file: <starpu_slu_lu_model_21.hannibal>
  1374. file: <starpu_slu_lu_model_11.hannibal>
  1375. file: <starpu_slu_lu_model_22.hannibal>
  1376. file: <starpu_slu_lu_model_12.hannibal>
  1377. @end example
  1378. Here, the codelets of the lu example are available. We can examine the
  1379. performance of the 22 kernel:
  1380. @example
  1381. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1382. performance model for cpu
  1383. # hash size mean dev n
  1384. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1385. performance model for cuda_0
  1386. # hash size mean dev n
  1387. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1388. performance model for cuda_1
  1389. # hash size mean dev n
  1390. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1391. performance model for cuda_2
  1392. # hash size mean dev n
  1393. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1394. @end example
  1395. We can see that for the given size, over a sample of a few hundreds of
  1396. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1397. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1398. CPUs.
  1399. @c ---------------------------------------------------------------------
  1400. @c MPI support
  1401. @c ---------------------------------------------------------------------
  1402. @node StarPU MPI support
  1403. @chapter StarPU MPI support
  1404. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1405. @c ---------------------------------------------------------------------
  1406. @c Configuration options
  1407. @c ---------------------------------------------------------------------
  1408. @node Configuring StarPU
  1409. @chapter Configuring StarPU
  1410. @menu
  1411. * Compilation configuration::
  1412. * Execution configuration through environment variables::
  1413. @end menu
  1414. @node Compilation configuration
  1415. @section Compilation configuration
  1416. The following arguments can be given to the @code{configure} script.
  1417. @menu
  1418. * Common configuration::
  1419. * Configuring workers::
  1420. * Advanced configuration::
  1421. @end menu
  1422. @node Common configuration
  1423. @subsection Common configuration
  1424. @menu
  1425. * --enable-debug::
  1426. * --enable-fast::
  1427. * --enable-verbose::
  1428. * --enable-coverage::
  1429. @end menu
  1430. @node --enable-debug
  1431. @subsubsection @code{--enable-debug}
  1432. @table @asis
  1433. @item @emph{Description}:
  1434. Enable debugging messages.
  1435. @end table
  1436. @node --enable-fast
  1437. @subsubsection @code{--enable-fast}
  1438. @table @asis
  1439. @item @emph{Description}:
  1440. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1441. @end table
  1442. @node --enable-verbose
  1443. @subsubsection @code{--enable-verbose}
  1444. @table @asis
  1445. @item @emph{Description}:
  1446. Augment the verbosity of the debugging messages. This can be disabled
  1447. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1448. any value.
  1449. @smallexample
  1450. % STARPU_SILENT=1 ./vector_scal
  1451. @end smallexample
  1452. @end table
  1453. @node --enable-coverage
  1454. @subsubsection @code{--enable-coverage}
  1455. @table @asis
  1456. @item @emph{Description}:
  1457. Enable flags for the @code{gcov} coverage tool.
  1458. @end table
  1459. @node Configuring workers
  1460. @subsection Configuring workers
  1461. @menu
  1462. * --enable-nmaxcpus::
  1463. * --disable-cpu::
  1464. * --enable-maxcudadev::
  1465. * --disable-cuda::
  1466. * --with-cuda-dir::
  1467. * --with-cuda-include-dir::
  1468. * --with-cuda-lib-dir::
  1469. * --enable-maxopencldev::
  1470. * --disable-opencl::
  1471. * --with-opencl-dir::
  1472. * --with-opencl-include-dir::
  1473. * --with-opencl-lib-dir::
  1474. * --enable-gordon::
  1475. * --with-gordon-dir::
  1476. @end menu
  1477. @node --enable-nmaxcpus
  1478. @subsubsection @code{--enable-nmaxcpus=<number>}
  1479. @table @asis
  1480. @item @emph{Description}:
  1481. Defines the maximum number of CPU cores that StarPU will support, then
  1482. available as the @code{STARPU_NMAXCPUS} macro.
  1483. @end table
  1484. @node --disable-cpu
  1485. @subsubsection @code{--disable-cpu}
  1486. @table @asis
  1487. @item @emph{Description}:
  1488. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1489. @end table
  1490. @node --enable-maxcudadev
  1491. @subsubsection @code{--enable-maxcudadev=<number>}
  1492. @table @asis
  1493. @item @emph{Description}:
  1494. Defines the maximum number of CUDA devices that StarPU will support, then
  1495. available as the @code{STARPU_MAXCUDADEVS} macro.
  1496. @end table
  1497. @node --disable-cuda
  1498. @subsubsection @code{--disable-cuda}
  1499. @table @asis
  1500. @item @emph{Description}:
  1501. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1502. @end table
  1503. @node --with-cuda-dir
  1504. @subsubsection @code{--with-cuda-dir=<path>}
  1505. @table @asis
  1506. @item @emph{Description}:
  1507. Specify the directory where CUDA is installed. This directory should notably contain
  1508. @code{include/cuda.h}.
  1509. @end table
  1510. @node --with-cuda-include-dir
  1511. @subsubsection @code{--with-cuda-include-dir=<path>}
  1512. @table @asis
  1513. @item @emph{Description}:
  1514. Specify the directory where CUDA headers are installed. This directory should
  1515. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1516. value given to @code{--with-cuda-dir}.
  1517. @end table
  1518. @node --with-cuda-lib-dir
  1519. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1520. @table @asis
  1521. @item @emph{Description}:
  1522. Specify the directory where the CUDA library is installed. This directory should
  1523. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1524. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1525. @end table
  1526. @node --enable-maxopencldev
  1527. @subsubsection @code{--enable-maxopencldev=<number>}
  1528. @table @asis
  1529. @item @emph{Description}:
  1530. Defines the maximum number of OpenCL devices that StarPU will support, then
  1531. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1532. @end table
  1533. @node --disable-opencl
  1534. @subsubsection @code{--disable-opencl}
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. Disable the use of OpenCL, even if the SDK is detected.
  1538. @end table
  1539. @node --with-opencl-dir
  1540. @subsubsection @code{--with-opencl-dir=<path>}
  1541. @table @asis
  1542. @item @emph{Description}:
  1543. Specify the location of the OpenCL SDK. This directory should notably contain
  1544. @code{include/CL/cl.h}.
  1545. @end table
  1546. @node --with-opencl-include-dir
  1547. @subsubsection @code{--with-opencl-include-dir=<path>}
  1548. @table @asis
  1549. @item @emph{Description}:
  1550. Specify the location of OpenCL headers. This directory should notably contain
  1551. @code{CL/cl.h}. This defaults to
  1552. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1553. @end table
  1554. @node --with-opencl-lib-dir
  1555. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1556. @table @asis
  1557. @item @emph{Description}:
  1558. Specify the location of the OpenCL library. This directory should notably
  1559. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1560. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1561. @end table
  1562. @node --enable-gordon
  1563. @subsubsection @code{--enable-gordon}
  1564. @table @asis
  1565. @item @emph{Description}:
  1566. Enable the use of the Gordon runtime for Cell SPUs.
  1567. @c TODO: rather default to enabled when detected
  1568. @end table
  1569. @node --with-gordon-dir
  1570. @subsubsection @code{--with-gordon-dir=<path>}
  1571. @table @asis
  1572. @item @emph{Description}:
  1573. Specify the location of the Gordon SDK.
  1574. @end table
  1575. @node Advanced configuration
  1576. @subsection Advanced configuration
  1577. @menu
  1578. * --enable-perf-debug::
  1579. * --enable-model-debug::
  1580. * --enable-stats::
  1581. * --enable-maxbuffers::
  1582. * --enable-allocation-cache::
  1583. * --enable-opengl-render::
  1584. * --enable-blas-lib::
  1585. * --with-magma::
  1586. * --with-fxt::
  1587. * --with-perf-model-dir::
  1588. * --with-mpicc::
  1589. * --with-goto-dir::
  1590. * --with-atlas-dir::
  1591. * --with-mkl-cflags::
  1592. * --with-mkl-ldflags::
  1593. @end menu
  1594. @node --enable-perf-debug
  1595. @subsubsection @code{--enable-perf-debug}
  1596. @table @asis
  1597. @item @emph{Description}:
  1598. Enable performance debugging.
  1599. @end table
  1600. @node --enable-model-debug
  1601. @subsubsection @code{--enable-model-debug}
  1602. @table @asis
  1603. @item @emph{Description}:
  1604. Enable performance model debugging.
  1605. @end table
  1606. @node --enable-stats
  1607. @subsubsection @code{--enable-stats}
  1608. @table @asis
  1609. @item @emph{Description}:
  1610. Enable statistics.
  1611. @end table
  1612. @node --enable-maxbuffers
  1613. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1614. @table @asis
  1615. @item @emph{Description}:
  1616. Define the maximum number of buffers that tasks will be able to take
  1617. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1618. @end table
  1619. @node --enable-allocation-cache
  1620. @subsubsection @code{--enable-allocation-cache}
  1621. @table @asis
  1622. @item @emph{Description}:
  1623. Enable the use of a data allocation cache to avoid the cost of it with
  1624. CUDA. Still experimental.
  1625. @end table
  1626. @node --enable-opengl-render
  1627. @subsubsection @code{--enable-opengl-render}
  1628. @table @asis
  1629. @item @emph{Description}:
  1630. Enable the use of OpenGL for the rendering of some examples.
  1631. @c TODO: rather default to enabled when detected
  1632. @end table
  1633. @node --enable-blas-lib
  1634. @subsubsection @code{--enable-blas-lib=<name>}
  1635. @table @asis
  1636. @item @emph{Description}:
  1637. Specify the blas library to be used by some of the examples. The
  1638. library has to be 'atlas' or 'goto'.
  1639. @end table
  1640. @node --with-magma
  1641. @subsubsection @code{--with-magma=<path>}
  1642. @table @asis
  1643. @item @emph{Description}:
  1644. Specify where magma is installed. This directory should notably contain
  1645. @code{include/magmablas.h}.
  1646. @end table
  1647. @node --with-fxt
  1648. @subsubsection @code{--with-fxt=<path>}
  1649. @table @asis
  1650. @item @emph{Description}:
  1651. Specify the location of FxT (for generating traces and rendering them
  1652. using ViTE). This directory should notably contain
  1653. @code{include/fxt/fxt.h}.
  1654. @c TODO add ref to other section
  1655. @end table
  1656. @node --with-perf-model-dir
  1657. @subsubsection @code{--with-perf-model-dir=<dir>}
  1658. @table @asis
  1659. @item @emph{Description}:
  1660. Specify where performance models should be stored (instead of defaulting to the
  1661. current user's home).
  1662. @end table
  1663. @node --with-mpicc
  1664. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1665. @table @asis
  1666. @item @emph{Description}:
  1667. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1668. @end table
  1669. @node --with-goto-dir
  1670. @subsubsection @code{--with-goto-dir=<dir>}
  1671. @table @asis
  1672. @item @emph{Description}:
  1673. Specify the location of GotoBLAS.
  1674. @end table
  1675. @node --with-atlas-dir
  1676. @subsubsection @code{--with-atlas-dir=<dir>}
  1677. @table @asis
  1678. @item @emph{Description}:
  1679. Specify the location of ATLAS. This directory should notably contain
  1680. @code{include/cblas.h}.
  1681. @end table
  1682. @node --with-mkl-cflags
  1683. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1684. @table @asis
  1685. @item @emph{Description}:
  1686. Specify the compilation flags for the MKL Library.
  1687. @end table
  1688. @node --with-mkl-ldflags
  1689. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1690. @table @asis
  1691. @item @emph{Description}:
  1692. Specify the linking flags for the MKL Library. Note that the
  1693. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1694. website provides a script to determine the linking flags.
  1695. @end table
  1696. @c ---------------------------------------------------------------------
  1697. @c Environment variables
  1698. @c ---------------------------------------------------------------------
  1699. @node Execution configuration through environment variables
  1700. @section Execution configuration through environment variables
  1701. @menu
  1702. * Workers:: Configuring workers
  1703. * Scheduling:: Configuring the Scheduling engine
  1704. * Misc:: Miscellaneous and debug
  1705. @end menu
  1706. Note: the values given in @code{starpu_conf} structure passed when
  1707. calling @code{starpu_init} will override the values of the environment
  1708. variables.
  1709. @node Workers
  1710. @subsection Configuring workers
  1711. @menu
  1712. * STARPU_NCPUS:: Number of CPU workers
  1713. * STARPU_NCUDA:: Number of CUDA workers
  1714. * STARPU_NOPENCL:: Number of OpenCL workers
  1715. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1716. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1717. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1718. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1719. @end menu
  1720. @node STARPU_NCPUS
  1721. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1722. @table @asis
  1723. @item @emph{Description}:
  1724. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1725. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1726. the accelerators.
  1727. @end table
  1728. @node STARPU_NCUDA
  1729. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1730. @table @asis
  1731. @item @emph{Description}:
  1732. Specify the number of CUDA devices that StarPU can use. If
  1733. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1734. possible to select which CUDA devices should be used by the means of the
  1735. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1736. create as many CUDA workers as there are CUDA devices.
  1737. @end table
  1738. @node STARPU_NOPENCL
  1739. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1740. @table @asis
  1741. @item @emph{Description}:
  1742. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1743. @end table
  1744. @node STARPU_NGORDON
  1745. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1746. @table @asis
  1747. @item @emph{Description}:
  1748. Specify the number of SPUs that StarPU can use.
  1749. @end table
  1750. @node STARPU_WORKERS_CPUID
  1751. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1752. @table @asis
  1753. @item @emph{Description}:
  1754. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1755. specifies on which logical CPU the different workers should be
  1756. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1757. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1758. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1759. determined by the OS, or provided by the @code{hwloc} library in case it is
  1760. available.
  1761. Note that the first workers correspond to the CUDA workers, then come the
  1762. OpenCL and the SPU, and finally the CPU workers. For example if
  1763. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1764. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1765. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1766. the logical CPUs #1 and #3 will be used by the CPU workers.
  1767. If the number of workers is larger than the array given in
  1768. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1769. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1770. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1771. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1772. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1773. @end table
  1774. @node STARPU_WORKERS_CUDAID
  1775. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1776. @table @asis
  1777. @item @emph{Description}:
  1778. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1779. possible to select which CUDA devices should be used by StarPU. On a machine
  1780. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1781. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1782. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1783. the one reported by CUDA).
  1784. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1785. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1786. @end table
  1787. @node STARPU_WORKERS_OPENCLID
  1788. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1789. @table @asis
  1790. @item @emph{Description}:
  1791. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1792. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1793. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1794. @end table
  1795. @node Scheduling
  1796. @subsection Configuring the Scheduling engine
  1797. @menu
  1798. * STARPU_SCHED:: Scheduling policy
  1799. * STARPU_CALIBRATE:: Calibrate performance models
  1800. * STARPU_PREFETCH:: Use data prefetch
  1801. * STARPU_SCHED_ALPHA:: Computation factor
  1802. * STARPU_SCHED_BETA:: Communication factor
  1803. @end menu
  1804. @node STARPU_SCHED
  1805. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1806. @table @asis
  1807. @item @emph{Description}:
  1808. This chooses between the different scheduling policies proposed by StarPU: work
  1809. random, stealing, greedy, with performance models, etc.
  1810. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1811. @end table
  1812. @node STARPU_CALIBRATE
  1813. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1814. @table @asis
  1815. @item @emph{Description}:
  1816. If this variable is set to 1, the performance models are calibrated during
  1817. the execution. If it is set to 2, the previous values are dropped to restart
  1818. calibration from scratch. Setting this variable to 0 disable calibration, this
  1819. is the default behaviour.
  1820. Note: this currently only applies to dm and dmda scheduling policies.
  1821. @end table
  1822. @node STARPU_PREFETCH
  1823. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1824. @table @asis
  1825. @item @emph{Description}:
  1826. This variable indicates whether data prefetching should be enabled (0 means
  1827. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1828. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1829. advance, so that data is already present on the GPU when the task starts. As a
  1830. result, computation and data transfers are overlapped.
  1831. @end table
  1832. @node STARPU_SCHED_ALPHA
  1833. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1834. @table @asis
  1835. @item @emph{Description}:
  1836. To estimate the cost of a task StarPU takes into account the estimated
  1837. computation time (obtained thanks to performance models). The alpha factor is
  1838. the coefficient to be applied to it before adding it to the communication part.
  1839. @end table
  1840. @node STARPU_SCHED_BETA
  1841. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1842. @table @asis
  1843. @item @emph{Description}:
  1844. To estimate the cost of a task StarPU takes into account the estimated
  1845. data transfer time (obtained thanks to performance models). The beta factor is
  1846. the coefficient to be applied to it before adding it to the computation part.
  1847. @end table
  1848. @node Misc
  1849. @subsection Miscellaneous and debug
  1850. @menu
  1851. * STARPU_SILENT:: Disable verbose mode
  1852. * STARPU_LOGFILENAME:: Select debug file name
  1853. * STARPU_FXT_PREFIX:: FxT trace location
  1854. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1855. @end menu
  1856. @node STARPU_SILENT
  1857. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1858. @table @asis
  1859. @item @emph{Description}:
  1860. This variable allows to disable verbose mode at runtime when StarPU
  1861. has been configured with the option @code{--enable-verbose}.
  1862. @end table
  1863. @node STARPU_LOGFILENAME
  1864. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1865. @table @asis
  1866. @item @emph{Description}:
  1867. This variable specifies in which file the debugging output should be saved to.
  1868. @end table
  1869. @node STARPU_FXT_PREFIX
  1870. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1871. @table @asis
  1872. @item @emph{Description}
  1873. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1874. @end table
  1875. @node STARPU_LIMIT_GPU_MEM
  1876. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1877. @table @asis
  1878. @item @emph{Description}
  1879. This variable specifies the maximum number of megabytes that should be
  1880. available to the application on each GPUs. In case this value is smaller than
  1881. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1882. on the device. This variable is intended to be used for experimental purposes
  1883. as it emulates devices that have a limited amount of memory.
  1884. @end table
  1885. @c ---------------------------------------------------------------------
  1886. @c StarPU API
  1887. @c ---------------------------------------------------------------------
  1888. @node StarPU API
  1889. @chapter StarPU API
  1890. @menu
  1891. * Initialization and Termination:: Initialization and Termination methods
  1892. * Workers' Properties:: Methods to enumerate workers' properties
  1893. * Data Library:: Methods to manipulate data
  1894. * Data Interfaces::
  1895. * Data Partition::
  1896. * Codelets and Tasks:: Methods to construct tasks
  1897. * Explicit Dependencies:: Explicit Dependencies
  1898. * Implicit Data Dependencies:: Implicit Data Dependencies
  1899. * Performance Model API::
  1900. * Profiling API:: Profiling API
  1901. * CUDA extensions:: CUDA extensions
  1902. * OpenCL extensions:: OpenCL extensions
  1903. * Cell extensions:: Cell extensions
  1904. * Miscellaneous helpers::
  1905. @end menu
  1906. @node Initialization and Termination
  1907. @section Initialization and Termination
  1908. @menu
  1909. * starpu_init:: Initialize StarPU
  1910. * struct starpu_conf:: StarPU runtime configuration
  1911. * starpu_conf_init:: Initialize starpu_conf structure
  1912. * starpu_shutdown:: Terminate StarPU
  1913. @end menu
  1914. @node starpu_init
  1915. @subsection @code{starpu_init} -- Initialize StarPU
  1916. @table @asis
  1917. @item @emph{Description}:
  1918. This is StarPU initialization method, which must be called prior to any other
  1919. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1920. policy, number of cores, ...) by passing a non-null argument. Default
  1921. configuration is used if the passed argument is @code{NULL}.
  1922. @item @emph{Return value}:
  1923. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1924. indicates that no worker was available (so that StarPU was not initialized).
  1925. @item @emph{Prototype}:
  1926. @code{int starpu_init(struct starpu_conf *conf);}
  1927. @end table
  1928. @node struct starpu_conf
  1929. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1930. @table @asis
  1931. @item @emph{Description}:
  1932. This structure is passed to the @code{starpu_init} function in order
  1933. to configure StarPU.
  1934. When the default value is used, StarPU automatically selects the number
  1935. of processing units and takes the default scheduling policy. This parameter
  1936. overwrites the equivalent environment variables.
  1937. @item @emph{Fields}:
  1938. @table @asis
  1939. @item @code{sched_policy_name} (default = NULL):
  1940. This is the name of the scheduling policy. This can also be specified with the
  1941. @code{STARPU_SCHED} environment variable.
  1942. @item @code{sched_policy} (default = NULL):
  1943. This is the definition of the scheduling policy. This field is ignored
  1944. if @code{sched_policy_name} is set.
  1945. @item @code{ncpus} (default = -1):
  1946. This is the number of CPU cores that StarPU can use. This can also be
  1947. specified with the @code{STARPU_NCPUS} environment variable.
  1948. @item @code{ncuda} (default = -1):
  1949. This is the number of CUDA devices that StarPU can use. This can also be
  1950. specified with the @code{STARPU_NCUDA} environment variable.
  1951. @item @code{nopencl} (default = -1):
  1952. This is the number of OpenCL devices that StarPU can use. This can also be
  1953. specified with the @code{STARPU_NOPENCL} environment variable.
  1954. @item @code{nspus} (default = -1):
  1955. This is the number of Cell SPUs that StarPU can use. This can also be
  1956. specified with the @code{STARPU_NGORDON} environment variable.
  1957. @item @code{use_explicit_workers_bindid} (default = 0)
  1958. If this flag is set, the @code{workers_bindid} array indicates where the
  1959. different workers are bound, otherwise StarPU automatically selects where to
  1960. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1961. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1962. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1963. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1964. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1965. where to bind the different workers. The i-th entry of the
  1966. @code{workers_bindid} indicates the logical identifier of the processor which
  1967. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1968. either determined by the OS, or provided by the @code{hwloc} library in case it
  1969. is available.
  1970. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1971. ignored.
  1972. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1973. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1974. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1975. CUDA devices in a round-robin fashion.
  1976. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1977. ignored.
  1978. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1979. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1980. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1981. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1982. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1983. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1984. OpenCL devices in a round-robin fashion.
  1985. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1986. @item @code{calibrate} (default = 0):
  1987. If this flag is set, StarPU will calibrate the performance models when
  1988. executing tasks. If this value is equal to -1, the default value is used. The
  1989. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1990. variable when it is set.
  1991. @end table
  1992. @end table
  1993. @node starpu_conf_init
  1994. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1995. @table @asis
  1996. This function initializes the @code{starpu_conf} structure passed as argument
  1997. with the default values. In case some configuration parameters are already
  1998. specified through environment variables, @code{starpu_conf_init} initializes
  1999. the fields of the structure according to the environment variables. For
  2000. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2001. @code{.ncuda} field of the structure passed as argument.
  2002. @item @emph{Return value}:
  2003. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2004. indicates that the argument was NULL.
  2005. @item @emph{Prototype}:
  2006. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2007. @end table
  2008. @node starpu_shutdown
  2009. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2010. @table @asis
  2011. @item @emph{Description}:
  2012. This is StarPU termination method. It must be called at the end of the
  2013. application: statistics and other post-mortem debugging information are not
  2014. guaranteed to be available until this method has been called.
  2015. @item @emph{Prototype}:
  2016. @code{void starpu_shutdown(void);}
  2017. @end table
  2018. @node Workers' Properties
  2019. @section Workers' Properties
  2020. @menu
  2021. * starpu_worker_get_count:: Get the number of processing units
  2022. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2023. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2024. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2025. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2026. * starpu_worker_get_id:: Get the identifier of the current worker
  2027. * starpu_worker_get_devid:: Get the device identifier of a worker
  2028. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2029. * starpu_worker_get_name:: Get the name of a worker
  2030. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2031. @end menu
  2032. @node starpu_worker_get_count
  2033. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2034. @table @asis
  2035. @item @emph{Description}:
  2036. This function returns the number of workers (i.e. processing units executing
  2037. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2038. @item @emph{Prototype}:
  2039. @code{unsigned starpu_worker_get_count(void);}
  2040. @end table
  2041. @node starpu_cpu_worker_get_count
  2042. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2043. @table @asis
  2044. @item @emph{Description}:
  2045. This function returns the number of CPUs controlled by StarPU. The returned
  2046. value should be at most @code{STARPU_NMAXCPUS}.
  2047. @item @emph{Prototype}:
  2048. @code{unsigned starpu_cpu_worker_get_count(void);}
  2049. @end table
  2050. @node starpu_cuda_worker_get_count
  2051. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2052. @table @asis
  2053. @item @emph{Description}:
  2054. This function returns the number of CUDA devices controlled by StarPU. The returned
  2055. value should be at most @code{STARPU_MAXCUDADEVS}.
  2056. @item @emph{Prototype}:
  2057. @code{unsigned starpu_cuda_worker_get_count(void);}
  2058. @end table
  2059. @node starpu_opencl_worker_get_count
  2060. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2061. @table @asis
  2062. @item @emph{Description}:
  2063. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2064. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2065. @item @emph{Prototype}:
  2066. @code{unsigned starpu_opencl_worker_get_count(void);}
  2067. @end table
  2068. @node starpu_spu_worker_get_count
  2069. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2070. @table @asis
  2071. @item @emph{Description}:
  2072. This function returns the number of Cell SPUs controlled by StarPU.
  2073. @item @emph{Prototype}:
  2074. @code{unsigned starpu_opencl_worker_get_count(void);}
  2075. @end table
  2076. @node starpu_worker_get_id
  2077. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2078. @table @asis
  2079. @item @emph{Description}:
  2080. This function returns the identifier of the worker associated to the calling
  2081. thread. The returned value is either -1 if the current context is not a StarPU
  2082. worker (i.e. when called from the application outside a task or a callback), or
  2083. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2084. @item @emph{Prototype}:
  2085. @code{int starpu_worker_get_id(void);}
  2086. @end table
  2087. @node starpu_worker_get_devid
  2088. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2089. @table @asis
  2090. @item @emph{Description}:
  2091. This functions returns the device id of the worker associated to an identifier
  2092. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2093. CUDA worker, this device identifier is the logical device identifier exposed by
  2094. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2095. identifier of a CPU worker is the logical identifier of the core on which the
  2096. worker was bound; this identifier is either provided by the OS or by the
  2097. @code{hwloc} library in case it is available.
  2098. @item @emph{Prototype}:
  2099. @code{int starpu_worker_get_devid(int id);}
  2100. @end table
  2101. @node starpu_worker_get_type
  2102. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2103. @table @asis
  2104. @item @emph{Description}:
  2105. This function returns the type of worker associated to an identifier (as
  2106. returned by the @code{starpu_worker_get_id} function). The returned value
  2107. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2108. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2109. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2110. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2111. identifier is unspecified.
  2112. @item @emph{Prototype}:
  2113. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2114. @end table
  2115. @node starpu_worker_get_name
  2116. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2117. @table @asis
  2118. @item @emph{Description}:
  2119. StarPU associates a unique human readable string to each processing unit. This
  2120. function copies at most the @code{maxlen} first bytes of the unique string
  2121. associated to a worker identified by its identifier @code{id} into the
  2122. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2123. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2124. function on an invalid identifier results in an unspecified behaviour.
  2125. @item @emph{Prototype}:
  2126. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2127. @end table
  2128. @node starpu_worker_get_memory_node
  2129. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2130. @table @asis
  2131. @item @emph{Description}:
  2132. This function returns the identifier of the memory node associated to the
  2133. worker identified by @code{workerid}.
  2134. @item @emph{Prototype}:
  2135. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2136. @end table
  2137. @node Data Library
  2138. @section Data Library
  2139. This section describes the data management facilities provided by StarPU.
  2140. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2141. design their own data interfaces if required.
  2142. @menu
  2143. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2144. * starpu_access_mode:: Data access mode
  2145. * unsigned memory_node:: Memory node
  2146. * starpu_data_handle:: StarPU opaque data handle
  2147. * void *interface:: StarPU data interface
  2148. * starpu_data_register:: Register a piece of data to StarPU
  2149. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2150. * starpu_data_invalidate:: Invalidate all data replicates
  2151. * starpu_data_acquire:: Access registered data from the application
  2152. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2153. * starpu_data_release:: Release registered data from the application
  2154. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2155. @end menu
  2156. @node starpu_data_malloc_pinned_if_possible
  2157. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2158. @table @asis
  2159. @item @emph{Description}:
  2160. This function allocates data of the given size. It will also try to pin it in
  2161. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2162. thus permit data transfer and computation overlapping.
  2163. @item @emph{Prototype}:
  2164. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2165. @end table
  2166. @node starpu_access_mode
  2167. @subsection @code{starpu_access_mode} -- Data access mode
  2168. This datatype describes a data access mode. The different available modes are:
  2169. @table @asis
  2170. @table @asis
  2171. @item @code{STARPU_R} read-only mode.
  2172. @item @code{STARPU_W} write-only mode.
  2173. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2174. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2175. @end table
  2176. @end table
  2177. @node unsigned memory_node
  2178. @subsection @code{unsigned memory_node} -- Memory node
  2179. @table @asis
  2180. @item @emph{Description}:
  2181. Every worker is associated to a memory node which is a logical abstraction of
  2182. the address space from which the processing unit gets its data. For instance,
  2183. the memory node associated to the different CPU workers represents main memory
  2184. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2185. Every memory node is identified by a logical index which is accessible from the
  2186. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2187. to StarPU, the specified memory node indicates where the piece of data
  2188. initially resides (we also call this memory node the home node of a piece of
  2189. data).
  2190. @end table
  2191. @node starpu_data_handle
  2192. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2193. @table @asis
  2194. @item @emph{Description}:
  2195. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2196. data. Once a piece of data has been registered to StarPU, it is associated to a
  2197. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2198. over the entire machine, so that we can maintain data consistency and locate
  2199. data replicates for instance.
  2200. @end table
  2201. @node void *interface
  2202. @subsection @code{void *interface} -- StarPU data interface
  2203. @table @asis
  2204. @item @emph{Description}:
  2205. Data management is done at a high-level in StarPU: rather than accessing a mere
  2206. list of contiguous buffers, the tasks may manipulate data that are described by
  2207. a high-level construct which we call data interface.
  2208. An example of data interface is the "vector" interface which describes a
  2209. contiguous data array on a spefic memory node. This interface is a simple
  2210. structure containing the number of elements in the array, the size of the
  2211. elements, and the address of the array in the appropriate address space (this
  2212. address may be invalid if there is no valid copy of the array in the memory
  2213. node). More informations on the data interfaces provided by StarPU are
  2214. given in @ref{Data Interfaces}.
  2215. When a piece of data managed by StarPU is used by a task, the task
  2216. implementation is given a pointer to an interface describing a valid copy of
  2217. the data that is accessible from the current processing unit.
  2218. @end table
  2219. @node starpu_data_register
  2220. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2221. @table @asis
  2222. @item @emph{Description}:
  2223. Register a piece of data into the handle located at the @code{handleptr}
  2224. address. The @code{interface} buffer contains the initial description of the
  2225. data in the home node. The @code{ops} argument is a pointer to a structure
  2226. describing the different methods used to manipulate this type of interface. See
  2227. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2228. If @code{home_node} is -1, StarPU will automatically
  2229. allocate the memory when it is used for the
  2230. first time in write-only mode. Once such data handle has been automatically
  2231. allocated, it is possible to access it using any access mode.
  2232. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2233. matrix) which can be registered by the means of helper functions (e.g.
  2234. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2235. @item @emph{Prototype}:
  2236. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2237. uint32_t home_node,
  2238. void *interface,
  2239. struct starpu_data_interface_ops_t *ops);}
  2240. @end table
  2241. @node starpu_data_unregister
  2242. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2243. @table @asis
  2244. @item @emph{Description}:
  2245. This function unregisters a data handle from StarPU. If the data was
  2246. automatically allocated by StarPU because the home node was -1, all
  2247. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2248. is put back into the home node in the buffer that was initially registered.
  2249. Using a data handle that has been unregistered from StarPU results in an
  2250. undefined behaviour.
  2251. @item @emph{Prototype}:
  2252. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2253. @end table
  2254. @node starpu_data_invalidate
  2255. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2256. @table @asis
  2257. @item @emph{Description}:
  2258. Destroy all replicates of the data handle. After data invalidation, the first
  2259. access to the handle must be performed in write-only mode. Accessing an
  2260. invalidated data in read-mode results in undefined behaviour.
  2261. @item @emph{Prototype}:
  2262. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2263. @end table
  2264. @c TODO create a specific sections about user interaction with the DSM ?
  2265. @node starpu_data_acquire
  2266. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2267. @table @asis
  2268. @item @emph{Description}:
  2269. The application must call this function prior to accessing registered data from
  2270. main memory outside tasks. StarPU ensures that the application will get an
  2271. up-to-date copy of the data in main memory located where the data was
  2272. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2273. be consistent with the access mode specified in the @code{mode} argument.
  2274. @code{starpu_data_release} must be called once the application does not need to
  2275. access the piece of data anymore.
  2276. Note that implicit data dependencies are also enforced by
  2277. @code{starpu_data_acquire} in case they are enabled.
  2278. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2279. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2280. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2281. @item @emph{Prototype}:
  2282. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2283. @end table
  2284. @node starpu_data_acquire_cb
  2285. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2286. @table @asis
  2287. @item @emph{Description}:
  2288. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2289. @code{starpu_data_release}. When the data specified in the first argument is
  2290. available in the appropriate access mode, the callback function is executed.
  2291. The application may access the requested data during the execution of this
  2292. callback. The callback function must call @code{starpu_data_release} once the
  2293. application does not need to access the piece of data anymore.
  2294. Note that implicit data dependencies are also enforced by
  2295. @code{starpu_data_acquire_cb} in case they are enabled.
  2296. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2297. be called from task callbacks. Upon successful completion, this function
  2298. returns 0.
  2299. @item @emph{Prototype}:
  2300. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2301. @end table
  2302. @node starpu_data_release
  2303. @subsection @code{starpu_data_release} -- Release registered data from the application
  2304. @table @asis
  2305. @item @emph{Description}:
  2306. This function releases the piece of data acquired by the application either by
  2307. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2308. @item @emph{Prototype}:
  2309. @code{void starpu_data_release(starpu_data_handle handle);}
  2310. @end table
  2311. @node starpu_data_set_wt_mask
  2312. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2313. @table @asis
  2314. @item @emph{Description}:
  2315. This function sets the write-through mask of a given data, i.e. a bitmask of
  2316. nodes where the data should be always replicated after modification.
  2317. @item @emph{Prototype}:
  2318. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2319. @end table
  2320. @node Data Interfaces
  2321. @section Data Interfaces
  2322. @menu
  2323. * Variable Interface::
  2324. * Vector Interface::
  2325. * Matrix Interface::
  2326. * 3D Matrix Interface::
  2327. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2328. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2329. @end menu
  2330. @node Variable Interface
  2331. @subsection Variable Interface
  2332. @table @asis
  2333. @item @emph{Description}:
  2334. This variant of @code{starpu_data_register} uses the variable interface,
  2335. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2336. and @code{elemsize} is the size of the variable.
  2337. @item @emph{Prototype}:
  2338. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2339. uint32_t home_node,
  2340. uintptr_t ptr, size_t elemsize);}
  2341. @item @emph{Example}:
  2342. @cartouche
  2343. @smallexample
  2344. float var;
  2345. starpu_data_handle var_handle;
  2346. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2347. @end smallexample
  2348. @end cartouche
  2349. @end table
  2350. @node Vector Interface
  2351. @subsection Vector Interface
  2352. @table @asis
  2353. @item @emph{Description}:
  2354. This variant of @code{starpu_data_register} uses the vector interface,
  2355. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2356. element in the home node. @code{nx} is the number of elements in the vector.
  2357. @code{elemsize} is the size of each element.
  2358. @item @emph{Prototype}:
  2359. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2360. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2361. @item @emph{Example}:
  2362. @cartouche
  2363. @smallexample
  2364. float vector[NX];
  2365. starpu_data_handle vector_handle;
  2366. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2367. sizeof(vector[0]));
  2368. @end smallexample
  2369. @end cartouche
  2370. @end table
  2371. @node Matrix Interface
  2372. @subsection Matrix Interface
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2376. matrices of elements. @code{ptr} is the address of the first element in the home
  2377. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2378. of elements in a row (this can be different from @code{ld} if there are extra
  2379. elements for alignment for instance). @code{ny} is the number of rows.
  2380. @code{elemsize} is the size of each element.
  2381. @item @emph{Prototype}:
  2382. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2383. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2384. uint32_t ny, size_t elemsize);}
  2385. @item @emph{Example}:
  2386. @cartouche
  2387. @smallexample
  2388. float *matrix;
  2389. starpu_data_handle matrix_handle;
  2390. matrix = (float*)malloc(width * height * sizeof(float));
  2391. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2392. width, width, height, sizeof(float));
  2393. @end smallexample
  2394. @end cartouche
  2395. @end table
  2396. @node 3D Matrix Interface
  2397. @subsection 3D Matrix Interface
  2398. @table @asis
  2399. @item @emph{Description}:
  2400. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2401. @code{ptr} is the address of the array of first element in the home node.
  2402. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2403. of rows between z planes. @code{nx} is the number of elements in a row (this
  2404. can be different from @code{ldy} if there are extra elements for alignment
  2405. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2406. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2407. each element.
  2408. @item @emph{Prototype}:
  2409. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2410. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2411. uint32_t ny, uint32_t nz, size_t elemsize);}
  2412. @item @emph{Example}:
  2413. @cartouche
  2414. @smallexample
  2415. float *block;
  2416. starpu_data_handle block_handle;
  2417. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2418. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2419. nx, nx*ny, nx, ny, nz, sizeof(float));
  2420. @end smallexample
  2421. @end cartouche
  2422. @end table
  2423. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2424. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2425. @table @asis
  2426. @item @emph{Description}:
  2427. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2428. TODO
  2429. @item @emph{Prototype}:
  2430. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2431. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2432. @item @emph{Example}:
  2433. @cartouche
  2434. @smallexample
  2435. @end smallexample
  2436. @end cartouche
  2437. @end table
  2438. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2439. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2440. @table @asis
  2441. @item @emph{Description}:
  2442. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2443. TODO
  2444. @item @emph{Prototype}:
  2445. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2446. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2447. @item @emph{Example}:
  2448. @cartouche
  2449. @smallexample
  2450. @end smallexample
  2451. @end cartouche
  2452. @end table
  2453. @node Data Partition
  2454. @section Data Partition
  2455. @menu
  2456. * struct starpu_data_filter:: StarPU filter structure
  2457. * starpu_data_partition:: Partition Data
  2458. * starpu_data_unpartition:: Unpartition Data
  2459. * starpu_data_get_nb_children::
  2460. * starpu_data_get_sub_data::
  2461. * Predefined filter functions::
  2462. @end menu
  2463. @node struct starpu_data_filter
  2464. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2465. @table @asis
  2466. @item @emph{Description}:
  2467. The filter structure describes a data partitioning operation, to be given to the
  2468. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2469. @item @emph{Fields}:
  2470. @table @asis
  2471. @item @code{filter_func}:
  2472. This function fills the @code{child_interface} structure with interface
  2473. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2474. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2475. @item @code{nchildren}:
  2476. This is the number of parts to partition the data into.
  2477. @item @code{get_nchildren}:
  2478. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2479. children depends on the actual data (e.g. the number of blocks in a sparse
  2480. matrix).
  2481. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2482. @item @code{get_child_ops}:
  2483. In case the resulting children use a different data interface, this function
  2484. returns which interface is used by child number @code{id}.
  2485. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2486. @item @code{filter_arg}:
  2487. Some filters take an addition parameter, but this is usually unused.
  2488. @item @code{filter_arg_ptr}:
  2489. Some filters take an additional array parameter like the sizes of the parts, but
  2490. this is usually unused.
  2491. @end table
  2492. @end table
  2493. @node starpu_data_partition
  2494. @subsection starpu_data_partition -- Partition Data
  2495. @table @asis
  2496. @item @emph{Description}:
  2497. This requests partitioning one StarPU data @code{initial_handle} into several
  2498. subdata according to the filter @code{f}
  2499. @item @emph{Prototype}:
  2500. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2501. @item @emph{Example}:
  2502. @cartouche
  2503. @smallexample
  2504. struct starpu_data_filter f = @{
  2505. .filter_func = starpu_vertical_block_filter_func,
  2506. .nchildren = nslicesx,
  2507. .get_nchildren = NULL,
  2508. .get_child_ops = NULL
  2509. @};
  2510. starpu_data_partition(A_handle, &f);
  2511. @end smallexample
  2512. @end cartouche
  2513. @end table
  2514. @node starpu_data_unpartition
  2515. @subsection starpu_data_unpartition -- Unpartition data
  2516. @table @asis
  2517. @item @emph{Description}:
  2518. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2519. collected back into one big piece in the @code{gathering_node} (usually 0).
  2520. @item @emph{Prototype}:
  2521. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2522. @item @emph{Example}:
  2523. @cartouche
  2524. @smallexample
  2525. starpu_data_unpartition(A_handle, 0);
  2526. @end smallexample
  2527. @end cartouche
  2528. @end table
  2529. @node starpu_data_get_nb_children
  2530. @subsection starpu_data_get_nb_children
  2531. @table @asis
  2532. @item @emph{Description}:
  2533. This function returns the number of children.
  2534. @item @emph{Return value}:
  2535. The number of children.
  2536. @item @emph{Prototype}:
  2537. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2538. @end table
  2539. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2540. @node starpu_data_get_sub_data
  2541. @subsection starpu_data_get_sub_data
  2542. @table @asis
  2543. @item @emph{Description}:
  2544. After partitioning a StarPU data by applying a filter,
  2545. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2546. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2547. is the number of filters to traverse (in case several filters have been applied,
  2548. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2549. parameters are the indexes.
  2550. @item @emph{Return value}:
  2551. A handle to the subdata.
  2552. @item @emph{Prototype}:
  2553. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2554. @item @emph{Example}:
  2555. @cartouche
  2556. @smallexample
  2557. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2558. @end smallexample
  2559. @end cartouche
  2560. @end table
  2561. @node Predefined filter functions
  2562. @subsection Predefined filter functions
  2563. @menu
  2564. * Partitioning BCSR Data::
  2565. * Partitioning BLAS interface::
  2566. * Partitioning Vector Data::
  2567. * Partitioning Block Data::
  2568. @end menu
  2569. This section gives a partial list of the predefined partitioning functions.
  2570. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2571. list can be found in @code{starpu_data_filters.h} .
  2572. @node Partitioning BCSR Data
  2573. @subsubsection Partitioning BCSR Data
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. TODO
  2577. @item @emph{Prototype}:
  2578. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2579. @end table
  2580. @table @asis
  2581. @item @emph{Description}:
  2582. TODO
  2583. @item @emph{Prototype}:
  2584. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2585. @end table
  2586. @node Partitioning BLAS interface
  2587. @subsubsection Partitioning BLAS interface
  2588. @table @asis
  2589. @item @emph{Description}:
  2590. This partitions a dense Matrix into horizontal blocks.
  2591. @item @emph{Prototype}:
  2592. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2593. @end table
  2594. @table @asis
  2595. @item @emph{Description}:
  2596. This partitions a dense Matrix into vertical blocks.
  2597. @item @emph{Prototype}:
  2598. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2599. @end table
  2600. @node Partitioning Vector Data
  2601. @subsubsection Partitioning Vector Data
  2602. @table @asis
  2603. @item @emph{Description}:
  2604. This partitions a vector into blocks of the same size.
  2605. @item @emph{Prototype}:
  2606. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2607. @end table
  2608. @table @asis
  2609. @item @emph{Description}:
  2610. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2611. @item @emph{Prototype}:
  2612. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2613. @end table
  2614. @table @asis
  2615. @item @emph{Description}:
  2616. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2617. @item @emph{Prototype}:
  2618. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2619. @end table
  2620. @node Partitioning Block Data
  2621. @subsubsection Partitioning Block Data
  2622. @table @asis
  2623. @item @emph{Description}:
  2624. This partitions a 3D matrix along the X axis.
  2625. @item @emph{Prototype}:
  2626. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2627. @end table
  2628. @node Codelets and Tasks
  2629. @section Codelets and Tasks
  2630. @menu
  2631. * struct starpu_codelet:: StarPU codelet structure
  2632. * struct starpu_task:: StarPU task structure
  2633. * starpu_task_init:: Initialize a Task
  2634. * starpu_task_create:: Allocate and Initialize a Task
  2635. * starpu_task_deinit:: Release all the resources used by a Task
  2636. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2637. * starpu_task_wait:: Wait for the termination of a Task
  2638. * starpu_task_submit:: Submit a Task
  2639. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2640. * starpu_get_current_task:: Return the task currently executed by the worker
  2641. * starpu_display_codelet_stats:: Display statistics
  2642. @end menu
  2643. @node struct starpu_codelet
  2644. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2645. @table @asis
  2646. @item @emph{Description}:
  2647. The codelet structure describes a kernel that is possibly implemented on various
  2648. targets. For compatibility, make sure to initialize the whole structure to zero.
  2649. @item @emph{Fields}:
  2650. @table @asis
  2651. @item @code{where}:
  2652. Indicates which types of processing units are able to execute the codelet.
  2653. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2654. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2655. indicates that it is only available on Cell SPUs.
  2656. @item @code{cpu_func} (optional):
  2657. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2658. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2659. argument being the array of data managed by the data management library, and
  2660. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2661. field of the @code{starpu_task} structure.
  2662. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2663. the @code{where} field, it must be non-null otherwise.
  2664. @item @code{cuda_func} (optional):
  2665. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2666. must be a host-function written in the CUDA runtime API}. Its prototype must
  2667. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2668. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2669. field, it must be non-null otherwise.
  2670. @item @code{opencl_func} (optional):
  2671. Is a function pointer to the OpenCL implementation of the codelet. Its
  2672. prototype must be:
  2673. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2674. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2675. @code{where} field, it must be non-null otherwise.
  2676. @item @code{gordon_func} (optional):
  2677. This is the index of the Cell SPU implementation within the Gordon library.
  2678. See Gordon documentation for more details on how to register a kernel and
  2679. retrieve its index.
  2680. @item @code{nbuffers}:
  2681. Specifies the number of arguments taken by the codelet. These arguments are
  2682. managed by the DSM and are accessed from the @code{void *buffers[]}
  2683. array. The constant argument passed with the @code{cl_arg} field of the
  2684. @code{starpu_task} structure is not counted in this number. This value should
  2685. not be above @code{STARPU_NMAXBUFS}.
  2686. @item @code{model} (optional):
  2687. This is a pointer to the task duration performance model associated to this
  2688. codelet. This optional field is ignored when set to @code{NULL}.
  2689. TODO
  2690. @item @code{power_model} (optional):
  2691. This is a pointer to the task power consumption performance model associated
  2692. to this codelet. This optional field is ignored when set to @code{NULL}.
  2693. In the case of parallel codelets, this has to account for all processing units
  2694. involved in the parallel execution.
  2695. TODO
  2696. @end table
  2697. @end table
  2698. @node struct starpu_task
  2699. @subsection @code{struct starpu_task} -- StarPU task structure
  2700. @table @asis
  2701. @item @emph{Description}:
  2702. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2703. processing units managed by StarPU. It instantiates a codelet. It can either be
  2704. allocated dynamically with the @code{starpu_task_create} method, or declared
  2705. statically. In the latter case, the programmer has to zero the
  2706. @code{starpu_task} structure and to fill the different fields properly. The
  2707. indicated default values correspond to the configuration of a task allocated
  2708. with @code{starpu_task_create}.
  2709. @item @emph{Fields}:
  2710. @table @asis
  2711. @item @code{cl}:
  2712. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2713. describes where the kernel should be executed, and supplies the appropriate
  2714. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2715. such empty tasks can be useful for synchronization purposes.
  2716. @item @code{buffers}:
  2717. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2718. different pieces of data accessed by the task, and how they should be accessed.
  2719. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2720. @code{handle} field specifies the handle of the piece of data, and the
  2721. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2722. of entries in this array must be specified in the @code{nbuffers} field of the
  2723. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2724. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2725. option when configuring StarPU.
  2726. @item @code{cl_arg} (optional) (default = NULL):
  2727. This pointer is passed to the codelet through the second argument
  2728. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2729. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2730. argument.
  2731. @item @code{cl_arg_size} (optional, Cell specific):
  2732. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2733. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2734. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2735. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2736. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2737. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2738. codelets.
  2739. @item @code{callback_func} (optional) (default = @code{NULL}):
  2740. This is a function pointer of prototype @code{void (*f)(void *)} which
  2741. specifies a possible callback. If this pointer is non-null, the callback
  2742. function is executed @emph{on the host} after the execution of the task. The
  2743. callback is passed the value contained in the @code{callback_arg} field. No
  2744. callback is executed if the field is set to @code{NULL}.
  2745. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2746. This is the pointer passed to the callback function. This field is ignored if
  2747. the @code{callback_func} is set to @code{NULL}.
  2748. @item @code{use_tag} (optional) (default = 0):
  2749. If set, this flag indicates that the task should be associated with the tag
  2750. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2751. with the task and to express task dependencies easily.
  2752. @item @code{tag_id}:
  2753. This fields contains the tag associated to the task if the @code{use_tag} field
  2754. was set, it is ignored otherwise.
  2755. @item @code{synchronous}:
  2756. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2757. returns only when the task has been executed (or if no worker is able to
  2758. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2759. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2760. This field indicates a level of priority for the task. This is an integer value
  2761. that must be set between the return values of the
  2762. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2763. and that of the @code{starpu_sched_get_max_priority} for the most important
  2764. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2765. are provided for convenience and respectively returns value of
  2766. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2767. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2768. order to allow static task initialization. Scheduling strategies that take
  2769. priorities into account can use this parameter to take better scheduling
  2770. decisions, but the scheduling policy may also ignore it.
  2771. @item @code{execute_on_a_specific_worker} (default = 0):
  2772. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2773. task to the worker specified by the @code{workerid} field.
  2774. @item @code{workerid} (optional):
  2775. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2776. which is the identifier of the worker that should process this task (as
  2777. returned by @code{starpu_worker_get_id}). This field is ignored if
  2778. @code{execute_on_a_specific_worker} field is set to 0.
  2779. @item @code{detach} (optional) (default = 1):
  2780. If this flag is set, it is not possible to synchronize with the task
  2781. by the means of @code{starpu_task_wait} later on. Internal data structures
  2782. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2783. flag is not set.
  2784. @item @code{destroy} (optional) (default = 1):
  2785. If this flag is set, the task structure will automatically be freed, either
  2786. after the execution of the callback if the task is detached, or during
  2787. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2788. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2789. called explicitly. Setting this flag for a statically allocated task structure
  2790. will result in undefined behaviour.
  2791. @item @code{predicted} (output field):
  2792. Predicted duration of the task. This field is only set if the scheduling
  2793. strategy used performance models.
  2794. @end table
  2795. @end table
  2796. @node starpu_task_init
  2797. @subsection @code{starpu_task_init} -- Initialize a Task
  2798. @table @asis
  2799. @item @emph{Description}:
  2800. Initialize a task structure with default values. This function is implicitly
  2801. called by @code{starpu_task_create}. By default, tasks initialized with
  2802. @code{starpu_task_init} must be deinitialized explicitly with
  2803. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2804. constant @code{STARPU_TASK_INITIALIZER}.
  2805. @item @emph{Prototype}:
  2806. @code{void starpu_task_init(struct starpu_task *task);}
  2807. @end table
  2808. @node starpu_task_create
  2809. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2810. @table @asis
  2811. @item @emph{Description}:
  2812. Allocate a task structure and initialize it with default values. Tasks
  2813. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2814. task is terminated. If the destroy flag is explicitly unset, the resources used
  2815. by the task are freed by calling
  2816. @code{starpu_task_destroy}.
  2817. @item @emph{Prototype}:
  2818. @code{struct starpu_task *starpu_task_create(void);}
  2819. @end table
  2820. @node starpu_task_deinit
  2821. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2822. @table @asis
  2823. @item @emph{Description}:
  2824. Release all the structures automatically allocated to execute the task. This is
  2825. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2826. freed. This should be used for statically allocated tasks for instance.
  2827. @item @emph{Prototype}:
  2828. @code{void starpu_task_deinit(struct starpu_task *task);}
  2829. @end table
  2830. @node starpu_task_destroy
  2831. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2832. @table @asis
  2833. @item @emph{Description}:
  2834. Free the resource allocated during @code{starpu_task_create}. This function can be
  2835. called automatically after the execution of a task by setting the
  2836. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2837. Calling this function on a statically allocated task results in an undefined
  2838. behaviour.
  2839. @item @emph{Prototype}:
  2840. @code{void starpu_task_destroy(struct starpu_task *task);}
  2841. @end table
  2842. @node starpu_task_wait
  2843. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2844. @table @asis
  2845. @item @emph{Description}:
  2846. This function blocks until the task has been executed. It is not possible to
  2847. synchronize with a task more than once. It is not possible to wait for
  2848. synchronous or detached tasks.
  2849. @item @emph{Return value}:
  2850. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2851. indicates that the specified task was either synchronous or detached.
  2852. @item @emph{Prototype}:
  2853. @code{int starpu_task_wait(struct starpu_task *task);}
  2854. @end table
  2855. @node starpu_task_submit
  2856. @subsection @code{starpu_task_submit} -- Submit a Task
  2857. @table @asis
  2858. @item @emph{Description}:
  2859. This function submits a task to StarPU. Calling this function does
  2860. not mean that the task will be executed immediately as there can be data or task
  2861. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2862. scheduling this task with respect to such dependencies.
  2863. This function returns immediately if the @code{synchronous} field of the
  2864. @code{starpu_task} structure was set to 0, and block until the termination of
  2865. the task otherwise. It is also possible to synchronize the application with
  2866. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2867. function for instance.
  2868. @item @emph{Return value}:
  2869. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2870. means that there is no worker able to process this task (e.g. there is no GPU
  2871. available and this task is only implemented for CUDA devices).
  2872. @item @emph{Prototype}:
  2873. @code{int starpu_task_submit(struct starpu_task *task);}
  2874. @end table
  2875. @node starpu_task_wait_for_all
  2876. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2877. @table @asis
  2878. @item @emph{Description}:
  2879. This function blocks until all the tasks that were submitted are terminated.
  2880. @item @emph{Prototype}:
  2881. @code{void starpu_task_wait_for_all(void);}
  2882. @end table
  2883. @node starpu_get_current_task
  2884. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2885. @table @asis
  2886. @item @emph{Description}:
  2887. This function returns the task currently executed by the worker, or
  2888. NULL if it is called either from a thread that is not a task or simply
  2889. because there is no task being executed at the moment.
  2890. @item @emph{Prototype}:
  2891. @code{struct starpu_task *starpu_get_current_task(void);}
  2892. @end table
  2893. @node starpu_display_codelet_stats
  2894. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2895. @table @asis
  2896. @item @emph{Description}:
  2897. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2898. @item @emph{Prototype}:
  2899. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2900. @end table
  2901. @c Callbacks : what can we put in callbacks ?
  2902. @node Explicit Dependencies
  2903. @section Explicit Dependencies
  2904. @menu
  2905. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2906. * starpu_tag_t:: Task logical identifier
  2907. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2908. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2909. * starpu_tag_wait:: Block until a Tag is terminated
  2910. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2911. * starpu_tag_remove:: Destroy a Tag
  2912. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2913. @end menu
  2914. @node starpu_task_declare_deps_array
  2915. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2916. @table @asis
  2917. @item @emph{Description}:
  2918. Declare task dependencies between a @code{task} and an array of tasks of length
  2919. @code{ndeps}. This function must be called prior to the submission of the task,
  2920. but it may called after the submission or the execution of the tasks in the
  2921. array provided the tasks are still valid (ie. they were not automatically
  2922. destroyed). Calling this function on a task that was already submitted or with
  2923. an entry of @code{task_array} that is not a valid task anymore results in an
  2924. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2925. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2926. same task, in this case, the dependencies are added. It is possible to have
  2927. redundancy in the task dependencies.
  2928. @item @emph{Prototype}:
  2929. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2930. @end table
  2931. @node starpu_tag_t
  2932. @subsection @code{starpu_tag_t} -- Task logical identifier
  2933. @table @asis
  2934. @item @emph{Description}:
  2935. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2936. dependencies between tasks by the means of those tags. To do so, fill the
  2937. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2938. be arbitrary) and set the @code{use_tag} field to 1.
  2939. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2940. not be started until the tasks which holds the declared dependency tags are
  2941. completed.
  2942. @end table
  2943. @node starpu_tag_declare_deps
  2944. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2945. @table @asis
  2946. @item @emph{Description}:
  2947. Specify the dependencies of the task identified by tag @code{id}. The first
  2948. argument specifies the tag which is configured, the second argument gives the
  2949. number of tag(s) on which @code{id} depends. The following arguments are the
  2950. tags which have to be terminated to unlock the task.
  2951. This function must be called before the associated task is submitted to StarPU
  2952. with @code{starpu_task_submit}.
  2953. @item @emph{Remark}
  2954. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2955. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2956. typically need to be explicitly casted. Using the
  2957. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2958. @item @emph{Prototype}:
  2959. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2960. @item @emph{Example}:
  2961. @cartouche
  2962. @example
  2963. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2964. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2965. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2966. @end example
  2967. @end cartouche
  2968. @end table
  2969. @node starpu_tag_declare_deps_array
  2970. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2971. @table @asis
  2972. @item @emph{Description}:
  2973. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2974. does not take a variable number of arguments but an array of tags of size
  2975. @code{ndeps}.
  2976. @item @emph{Prototype}:
  2977. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2978. @item @emph{Example}:
  2979. @cartouche
  2980. @example
  2981. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2982. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2983. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2984. @end example
  2985. @end cartouche
  2986. @end table
  2987. @node starpu_tag_wait
  2988. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2989. @table @asis
  2990. @item @emph{Description}:
  2991. This function blocks until the task associated to tag @code{id} has been
  2992. executed. This is a blocking call which must therefore not be called within
  2993. tasks or callbacks, but only from the application directly. It is possible to
  2994. synchronize with the same tag multiple times, as long as the
  2995. @code{starpu_tag_remove} function is not called. Note that it is still
  2996. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2997. data structure was freed (e.g. if the @code{destroy} flag of the
  2998. @code{starpu_task} was enabled).
  2999. @item @emph{Prototype}:
  3000. @code{void starpu_tag_wait(starpu_tag_t id);}
  3001. @end table
  3002. @node starpu_tag_wait_array
  3003. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3004. @table @asis
  3005. @item @emph{Description}:
  3006. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3007. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3008. terminated.
  3009. @item @emph{Prototype}:
  3010. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3011. @end table
  3012. @node starpu_tag_remove
  3013. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3014. @table @asis
  3015. @item @emph{Description}:
  3016. This function releases the resources associated to tag @code{id}. It can be
  3017. called once the corresponding task has been executed and when there is
  3018. no other tag that depend on this tag anymore.
  3019. @item @emph{Prototype}:
  3020. @code{void starpu_tag_remove(starpu_tag_t id);}
  3021. @end table
  3022. @node starpu_tag_notify_from_apps
  3023. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3024. @table @asis
  3025. @item @emph{Description}:
  3026. This function explicitly unlocks tag @code{id}. It may be useful in the
  3027. case of applications which execute part of their computation outside StarPU
  3028. tasks (e.g. third-party libraries). It is also provided as a
  3029. convenient tool for the programmer, for instance to entirely construct the task
  3030. DAG before actually giving StarPU the opportunity to execute the tasks.
  3031. @item @emph{Prototype}:
  3032. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3033. @end table
  3034. @node Implicit Data Dependencies
  3035. @section Implicit Data Dependencies
  3036. @menu
  3037. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3038. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3039. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3040. @end menu
  3041. In this section, we describe how StarPU makes it possible to insert implicit
  3042. task dependencies in order to enforce sequential data consistency. When this
  3043. data consistency is enabled on a specific data handle, any data access will
  3044. appear as sequentially consistent from the application. For instance, if the
  3045. application submits two tasks that access the same piece of data in read-only
  3046. mode, and then a third task that access it in write mode, dependencies will be
  3047. added between the two first tasks and the third one. Implicit data dependencies
  3048. are also inserted in the case of data accesses from the application.
  3049. @node starpu_data_set_default_sequential_consistency_flag
  3050. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3051. @table @asis
  3052. @item @emph{Description}:
  3053. Set the default sequential consistency flag. If a non-zero value is passed, a
  3054. sequential data consistency will be enforced for all handles registered after
  3055. this function call, otherwise it is disabled. By default, StarPU enables
  3056. sequential data consistency. It is also possible to select the data consistency
  3057. mode of a specific data handle with the
  3058. @code{starpu_data_set_sequential_consistency_flag} function.
  3059. @item @emph{Prototype}:
  3060. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3061. @end table
  3062. @node starpu_data_get_default_sequential_consistency_flag
  3063. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3064. @table @asis
  3065. @item @emph{Description}:
  3066. This function returns the current default sequential consistency flag.
  3067. @item @emph{Prototype}:
  3068. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3069. @end table
  3070. @node starpu_data_set_sequential_consistency_flag
  3071. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3072. @table @asis
  3073. @item @emph{Description}:
  3074. Select the data consistency mode associated to a data handle. The consistency
  3075. mode set using this function has the priority over the default mode which can
  3076. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3077. @item @emph{Prototype}:
  3078. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3079. @end table
  3080. @node Performance Model API
  3081. @section Performance Model API
  3082. @menu
  3083. * starpu_load_history_debug::
  3084. * starpu_perfmodel_debugfilepath::
  3085. * starpu_perfmodel_get_arch_name::
  3086. * starpu_force_bus_sampling::
  3087. @end menu
  3088. @node starpu_load_history_debug
  3089. @subsection @code{starpu_load_history_debug}
  3090. @table @asis
  3091. @item @emph{Description}:
  3092. TODO
  3093. @item @emph{Prototype}:
  3094. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3095. @end table
  3096. @node starpu_perfmodel_debugfilepath
  3097. @subsection @code{starpu_perfmodel_debugfilepath}
  3098. @table @asis
  3099. @item @emph{Description}:
  3100. TODO
  3101. @item @emph{Prototype}:
  3102. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3103. @end table
  3104. @node starpu_perfmodel_get_arch_name
  3105. @subsection @code{starpu_perfmodel_get_arch_name}
  3106. @table @asis
  3107. @item @emph{Description}:
  3108. TODO
  3109. @item @emph{Prototype}:
  3110. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3111. @end table
  3112. @node starpu_force_bus_sampling
  3113. @subsection @code{starpu_force_bus_sampling}
  3114. @table @asis
  3115. @item @emph{Description}:
  3116. This forces sampling the bus performance model again.
  3117. @item @emph{Prototype}:
  3118. @code{void starpu_force_bus_sampling(void);}
  3119. @end table
  3120. @node Profiling API
  3121. @section Profiling API
  3122. @menu
  3123. * starpu_profiling_status_set:: starpu_profiling_status_set
  3124. * starpu_profiling_status_get:: starpu_profiling_status_get
  3125. * struct starpu_task_profiling_info:: task profiling information
  3126. * struct starpu_worker_profiling_info:: worker profiling information
  3127. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3128. * struct starpu_bus_profiling_info:: bus profiling information
  3129. * starpu_bus_get_count::
  3130. * starpu_bus_get_id::
  3131. * starpu_bus_get_src::
  3132. * starpu_bus_get_dst::
  3133. * starpu_timing_timespec_delay_us::
  3134. * starpu_timing_timespec_to_us::
  3135. * starpu_bus_profiling_helper_display_summary::
  3136. * starpu_worker_profiling_helper_display_summary::
  3137. @end menu
  3138. @node starpu_profiling_status_set
  3139. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3140. @table @asis
  3141. @item @emph{Description}:
  3142. Thie function sets the profiling status. Profiling is activated by passing
  3143. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3144. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3145. resets all profiling measurements. When profiling is enabled, the
  3146. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3147. to a valid @code{struct starpu_task_profiling_info} structure containing
  3148. information about the execution of the task.
  3149. @item @emph{Return value}:
  3150. Negative return values indicate an error, otherwise the previous status is
  3151. returned.
  3152. @item @emph{Prototype}:
  3153. @code{int starpu_profiling_status_set(int status);}
  3154. @end table
  3155. @node starpu_profiling_status_get
  3156. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3157. @table @asis
  3158. @item @emph{Description}:
  3159. Return the current profiling status or a negative value in case there was an error.
  3160. @item @emph{Prototype}:
  3161. @code{int starpu_profiling_status_get(void);}
  3162. @end table
  3163. @node struct starpu_task_profiling_info
  3164. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3165. @table @asis
  3166. @item @emph{Description}:
  3167. This structure contains information about the execution of a task. It is
  3168. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3169. structure if profiling was enabled.
  3170. @item @emph{Fields}:
  3171. @table @asis
  3172. @item @code{submit_time}:
  3173. Date of task submission (relative to the initialization of StarPU).
  3174. @item @code{start_time}:
  3175. Date of task execution beginning (relative to the initialization of StarPU).
  3176. @item @code{end_time}:
  3177. Date of task execution termination (relative to the initialization of StarPU).
  3178. @item @code{workerid}:
  3179. Identifier of the worker which has executed the task.
  3180. @end table
  3181. @end table
  3182. @node struct starpu_worker_profiling_info
  3183. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3184. @table @asis
  3185. @item @emph{Description}:
  3186. This structure contains the profiling information associated to a worker.
  3187. @item @emph{Fields}:
  3188. @table @asis
  3189. @item @code{start_time}:
  3190. Starting date for the reported profiling measurements.
  3191. @item @code{total_time}:
  3192. Duration of the profiling measurement interval.
  3193. @item @code{executing_time}:
  3194. Time spent by the worker to execute tasks during the profiling measurement interval.
  3195. @item @code{sleeping_time}:
  3196. Time spent idling by the worker during the profiling measurement interval.
  3197. @item @code{executed_tasks}:
  3198. Number of tasks executed by the worker during the profiling measurement interval.
  3199. @end table
  3200. @end table
  3201. @node starpu_worker_get_profiling_info
  3202. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3203. @table @asis
  3204. @item @emph{Description}:
  3205. Get the profiling info associated to the worker identified by @code{workerid},
  3206. and reset the profiling measurements. If the @code{worker_info} argument is
  3207. NULL, only reset the counters associated to worker @code{workerid}.
  3208. @item @emph{Return value}:
  3209. Upon successful completion, this function returns 0. Otherwise, a negative
  3210. value is returned.
  3211. @item @emph{Prototype}:
  3212. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3213. @end table
  3214. @node struct starpu_bus_profiling_info
  3215. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3216. @table @asis
  3217. @item @emph{Description}:
  3218. TODO
  3219. @item @emph{Fields}:
  3220. @table @asis
  3221. @item @code{start_time}:
  3222. TODO
  3223. @item @code{total_time}:
  3224. TODO
  3225. @item @code{transferred_bytes}:
  3226. TODO
  3227. @item @code{transfer_count}:
  3228. TODO
  3229. @end table
  3230. @end table
  3231. @node starpu_bus_get_count
  3232. @subsection @code{starpu_bus_get_count}
  3233. @table @asis
  3234. @item @emph{Description}:
  3235. TODO
  3236. @item @emph{Prototype}:
  3237. @code{int starpu_bus_get_count(void);}
  3238. @end table
  3239. @node starpu_bus_get_id
  3240. @subsection @code{starpu_bus_get_id}
  3241. @table @asis
  3242. @item @emph{Description}:
  3243. TODO
  3244. @item @emph{Prototype}:
  3245. @code{int starpu_bus_get_id(int src, int dst);}
  3246. @end table
  3247. @node starpu_bus_get_src
  3248. @subsection @code{starpu_bus_get_src}
  3249. @table @asis
  3250. @item @emph{Description}:
  3251. TODO
  3252. @item @emph{Prototype}:
  3253. @code{int starpu_bus_get_src(int busid);}
  3254. @end table
  3255. @node starpu_bus_get_dst
  3256. @subsection @code{starpu_bus_get_dst}
  3257. @table @asis
  3258. @item @emph{Description}:
  3259. TODO
  3260. @item @emph{Prototype}:
  3261. @code{int starpu_bus_get_dst(int busid);}
  3262. @end table
  3263. @node starpu_timing_timespec_delay_us
  3264. @subsection @code{starpu_timing_timespec_delay_us}
  3265. @table @asis
  3266. @item @emph{Description}:
  3267. TODO
  3268. @item @emph{Prototype}:
  3269. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3270. @end table
  3271. @node starpu_timing_timespec_to_us
  3272. @subsection @code{starpu_timing_timespec_to_us}
  3273. @table @asis
  3274. @item @emph{Description}:
  3275. TODO
  3276. @item @emph{Prototype}:
  3277. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3278. @end table
  3279. @node starpu_bus_profiling_helper_display_summary
  3280. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3281. @table @asis
  3282. @item @emph{Description}:
  3283. TODO
  3284. @item @emph{Prototype}:
  3285. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3286. @end table
  3287. @node starpu_worker_profiling_helper_display_summary
  3288. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3289. @table @asis
  3290. @item @emph{Description}:
  3291. TODO
  3292. @item @emph{Prototype}:
  3293. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3294. @end table
  3295. @node CUDA extensions
  3296. @section CUDA extensions
  3297. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3298. @menu
  3299. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3300. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3301. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3302. @end menu
  3303. @node starpu_cuda_get_local_stream
  3304. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3305. @table @asis
  3306. @item @emph{Description}:
  3307. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3308. function is only provided for convenience so that programmers can easily use
  3309. asynchronous operations within codelets without having to create a stream by
  3310. hand. Note that the application is not forced to use the stream provided by
  3311. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3312. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3313. the likelihood of having all transfers overlapped.
  3314. @item @emph{Prototype}:
  3315. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3316. @end table
  3317. @node starpu_helper_cublas_init
  3318. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3319. @table @asis
  3320. @item @emph{Description}:
  3321. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3322. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3323. controlled by StarPU. This call blocks until CUBLAS has been properly
  3324. initialized on every device.
  3325. @item @emph{Prototype}:
  3326. @code{void starpu_helper_cublas_init(void);}
  3327. @end table
  3328. @node starpu_helper_cublas_shutdown
  3329. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3330. @table @asis
  3331. @item @emph{Description}:
  3332. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3333. @item @emph{Prototype}:
  3334. @code{void starpu_helper_cublas_shutdown(void);}
  3335. @end table
  3336. @node OpenCL extensions
  3337. @section OpenCL extensions
  3338. @menu
  3339. * Enabling OpenCL:: Enabling OpenCL
  3340. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3341. * Loading OpenCL kernels:: Loading OpenCL kernels
  3342. * OpenCL statistics:: Collecting statistics from OpenCL
  3343. @end menu
  3344. @node Enabling OpenCL
  3345. @subsection Enabling OpenCL
  3346. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3347. enabled by default. To enable OpenCL, you need either to disable CUDA
  3348. when configuring StarPU:
  3349. @example
  3350. % ./configure --disable-cuda
  3351. @end example
  3352. or when running applications:
  3353. @example
  3354. % STARPU_NCUDA=0 ./application
  3355. @end example
  3356. OpenCL will automatically be started on any device not yet used by
  3357. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3358. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3359. so:
  3360. @example
  3361. % STARPU_NCUDA=2 ./application
  3362. @end example
  3363. @node Compiling OpenCL kernels
  3364. @subsection Compiling OpenCL kernels
  3365. Source codes for OpenCL kernels can be stored in a file or in a
  3366. string. StarPU provides functions to build the program executable for
  3367. each available OpenCL device as a @code{cl_program} object. This
  3368. program executable can then be loaded within a specific queue as
  3369. explained in the next section. These are only helpers, Applications
  3370. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3371. use (e.g. different programs on the different OpenCL devices, for
  3372. relocation purpose for instance).
  3373. @menu
  3374. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3375. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3376. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3377. @end menu
  3378. @node starpu_opencl_load_opencl_from_file
  3379. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3380. @table @asis
  3381. @item @emph{Description}:
  3382. TODO
  3383. @item @emph{Prototype}:
  3384. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3385. @end table
  3386. @node starpu_opencl_load_opencl_from_string
  3387. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3388. @table @asis
  3389. @item @emph{Description}:
  3390. TODO
  3391. @item @emph{Prototype}:
  3392. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3393. @end table
  3394. @node starpu_opencl_unload_opencl
  3395. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3396. @table @asis
  3397. @item @emph{Description}:
  3398. TODO
  3399. @item @emph{Prototype}:
  3400. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3401. @end table
  3402. @node Loading OpenCL kernels
  3403. @subsection Loading OpenCL kernels
  3404. @menu
  3405. * starpu_opencl_load_kernel:: Loading a kernel
  3406. * starpu_opencl_relase_kernel:: Releasing a kernel
  3407. @end menu
  3408. @node starpu_opencl_load_kernel
  3409. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3410. @table @asis
  3411. @item @emph{Description}:
  3412. TODO
  3413. @item @emph{Prototype}:
  3414. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3415. }
  3416. @end table
  3417. @node starpu_opencl_relase_kernel
  3418. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3419. @table @asis
  3420. @item @emph{Description}:
  3421. TODO
  3422. @item @emph{Prototype}:
  3423. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3424. @end table
  3425. @node OpenCL statistics
  3426. @subsection OpenCL statistics
  3427. @menu
  3428. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3429. @end menu
  3430. @node starpu_opencl_collect_stats
  3431. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3432. @table @asis
  3433. @item @emph{Description}:
  3434. After termination of the kernels, the OpenCL codelet should call this function
  3435. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3436. collect statistics about the kernel execution (used cycles, consumed power).
  3437. @item @emph{Prototype}:
  3438. @code{int starpu_opencl_collect_stats(cl_event event);}
  3439. @end table
  3440. @node Cell extensions
  3441. @section Cell extensions
  3442. nothing yet.
  3443. @node Miscellaneous helpers
  3444. @section Miscellaneous helpers
  3445. @menu
  3446. * starpu_data_cpy:: Copy a data handle into another data handle
  3447. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3448. @end menu
  3449. @node starpu_data_cpy
  3450. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3451. @table @asis
  3452. @item @emph{Description}:
  3453. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3454. The @code{asynchronous} parameter indicates whether the function should
  3455. block or not. In the case of an asynchronous call, it is possible to
  3456. synchronize with the termination of this operation either by the means of
  3457. implicit dependencies (if enabled) or by calling
  3458. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3459. this callback function is executed after the handle has been copied, and it is
  3460. given the @code{callback_arg} pointer as argument.
  3461. @item @emph{Prototype}:
  3462. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3463. @end table
  3464. @node starpu_execute_on_each_worker
  3465. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3466. @table @asis
  3467. @item @emph{Description}:
  3468. When calling this method, the offloaded function specified by the first argument is
  3469. executed by every StarPU worker that may execute the function.
  3470. The second argument is passed to the offloaded function.
  3471. The last argument specifies on which types of processing units the function
  3472. should be executed. Similarly to the @code{where} field of the
  3473. @code{starpu_codelet} structure, it is possible to specify that the function
  3474. should be executed on every CUDA device and every CPU by passing
  3475. @code{STARPU_CPU|STARPU_CUDA}.
  3476. This function blocks until the function has been executed on every appropriate
  3477. processing units, so that it may not be called from a callback function for
  3478. instance.
  3479. @item @emph{Prototype}:
  3480. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3481. @end table
  3482. @c ---------------------------------------------------------------------
  3483. @c Advanced Topics
  3484. @c ---------------------------------------------------------------------
  3485. @node Advanced Topics
  3486. @chapter Advanced Topics
  3487. @menu
  3488. * Defining a new data interface::
  3489. * Defining a new scheduling policy::
  3490. @end menu
  3491. @node Defining a new data interface
  3492. @section Defining a new data interface
  3493. @menu
  3494. * struct starpu_data_interface_ops_t:: Per-interface methods
  3495. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3496. * An example of data interface:: An example of data interface
  3497. @end menu
  3498. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3499. @node struct starpu_data_interface_ops_t
  3500. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3501. @table @asis
  3502. @item @emph{Description}:
  3503. TODO describe all the different fields
  3504. @end table
  3505. @node struct starpu_data_copy_methods
  3506. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3507. @table @asis
  3508. @item @emph{Description}:
  3509. TODO describe all the different fields
  3510. @end table
  3511. @node An example of data interface
  3512. @subsection An example of data interface
  3513. @table @asis
  3514. TODO
  3515. @end table
  3516. @node Defining a new scheduling policy
  3517. @section Defining a new scheduling policy
  3518. TODO
  3519. A full example showing how to define a new scheduling policy is available in
  3520. the StarPU sources in the directory @code{examples/scheduler/}.
  3521. @menu
  3522. * struct starpu_sched_policy_s::
  3523. * starpu_worker_set_sched_condition::
  3524. * starpu_sched_set_min_priority:: Set the minimum priority level
  3525. * starpu_sched_set_max_priority:: Set the maximum priority level
  3526. * Source code::
  3527. @end menu
  3528. @node struct starpu_sched_policy_s
  3529. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3530. @table @asis
  3531. @item @emph{Description}:
  3532. This structure contains all the methods that implement a scheduling policy. An
  3533. application may specify which scheduling strategy in the @code{sched_policy}
  3534. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3535. function.
  3536. @item @emph{Fields}:
  3537. @table @asis
  3538. @item @code{init_sched}:
  3539. Initialize the scheduling policy.
  3540. @item @code{deinit_sched}:
  3541. Cleanup the scheduling policy.
  3542. @item @code{push_task}:
  3543. Insert a task into the scheduler.
  3544. @item @code{push_prio_task}:
  3545. Insert a priority task into the scheduler.
  3546. @item @code{pop_task}:
  3547. Get a task from the scheduler. The mutex associated to the worker is already
  3548. taken when this method is called.
  3549. @item @code{pop_every_task}:
  3550. Remove all available tasks from the scheduler (tasks are chained by the means
  3551. of the prev and next fields of the starpu_task structure). The mutex associated
  3552. to the worker is already taken when this method is called.
  3553. @item @code{post_exec_hook} (optionnal):
  3554. This method is called every time a task has been executed.
  3555. @item @code{policy_name}:
  3556. Name of the policy (optionnal).
  3557. @item @code{policy_description}:
  3558. Description of the policy (optionnal).
  3559. @end table
  3560. @end table
  3561. @node starpu_worker_set_sched_condition
  3562. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3563. @table @asis
  3564. @item @emph{Description}:
  3565. When there is no available task for a worker, StarPU blocks this worker on a
  3566. condition variable. This function specifies which condition variable (and the
  3567. associated mutex) should be used to block (and to wake up) a worker. Note that
  3568. multiple workers may use the same condition variable. For instance, in the case
  3569. of a scheduling strategy with a single task queue, the same condition variable
  3570. would be used to block and wake up all workers.
  3571. The initialization method of a scheduling strategy (@code{init_sched}) must
  3572. call this function once per worker.
  3573. @item @emph{Prototype}:
  3574. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3575. @end table
  3576. @node starpu_sched_set_min_priority
  3577. @subsection @code{starpu_sched_set_min_priority}
  3578. @table @asis
  3579. @item @emph{Description}:
  3580. Defines the minimum priority level supported by the scheduling policy. The
  3581. default minimum priority level is the same as the default priority level which
  3582. is 0 by convention. The application may access that value by calling the
  3583. @code{starpu_sched_get_min_priority} function. This function should only be
  3584. called from the initialization method of the scheduling policy, and should not
  3585. be used directly from the application.
  3586. @item @emph{Prototype}:
  3587. @code{void starpu_sched_set_min_priority(int min_prio)}
  3588. @end table
  3589. @node starpu_sched_set_max_priority
  3590. @subsection @code{starpu_sched_set_max_priority}
  3591. @table @asis
  3592. @item @emph{Description}:
  3593. Defines the maximum priority level supported by the scheduling policy. The
  3594. default maximum priority level is 1. The application may access that value by
  3595. calling the @code{starpu_sched_get_max_priority} function. This function should
  3596. only be called from the initialization method of the scheduling policy, and
  3597. should not be used directly from the application.
  3598. @item @emph{Prototype}:
  3599. @code{void starpu_sched_set_min_priority(int max_prio)}
  3600. @end table
  3601. @node Source code
  3602. @subsection Source code
  3603. @cartouche
  3604. @smallexample
  3605. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3606. .init_sched = init_dummy_sched,
  3607. .deinit_sched = deinit_dummy_sched,
  3608. .push_task = push_task_dummy,
  3609. .push_prio_task = NULL,
  3610. .pop_task = pop_task_dummy,
  3611. .post_exec_hook = NULL,
  3612. .pop_every_task = NULL,
  3613. .policy_name = "dummy",
  3614. .policy_description = "dummy scheduling strategy"
  3615. @};
  3616. @end smallexample
  3617. @end cartouche
  3618. @c ---------------------------------------------------------------------
  3619. @c Appendices
  3620. @c ---------------------------------------------------------------------
  3621. @c ---------------------------------------------------------------------
  3622. @c Full source code for the 'Scaling a Vector' example
  3623. @c ---------------------------------------------------------------------
  3624. @node Full source code for the 'Scaling a Vector' example
  3625. @appendix Full source code for the 'Scaling a Vector' example
  3626. @menu
  3627. * Main application::
  3628. * CPU Kernel::
  3629. * CUDA Kernel::
  3630. * OpenCL Kernel::
  3631. @end menu
  3632. @node Main application
  3633. @section Main application
  3634. @smallexample
  3635. @include vector_scal_c.texi
  3636. @end smallexample
  3637. @node CPU Kernel
  3638. @section CPU Kernel
  3639. @smallexample
  3640. @include vector_scal_cpu.texi
  3641. @end smallexample
  3642. @node CUDA Kernel
  3643. @section CUDA Kernel
  3644. @smallexample
  3645. @include vector_scal_cuda.texi
  3646. @end smallexample
  3647. @node OpenCL Kernel
  3648. @section OpenCL Kernel
  3649. @menu
  3650. * Invoking the kernel::
  3651. * Source of the kernel::
  3652. @end menu
  3653. @node Invoking the kernel
  3654. @subsection Invoking the kernel
  3655. @smallexample
  3656. @include vector_scal_opencl.texi
  3657. @end smallexample
  3658. @node Source of the kernel
  3659. @subsection Source of the kernel
  3660. @smallexample
  3661. @include vector_scal_opencl_codelet.texi
  3662. @end smallexample
  3663. @bye