mpi_cholesky_distributed.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <starpu_mpi.h>
  19. #include "mpi_cholesky.h"
  20. #include "mpi_cholesky_models.h"
  21. /*
  22. * Create the codelets
  23. */
  24. static starpu_codelet cl11 =
  25. {
  26. .where = STARPU_CPU|STARPU_CUDA,
  27. .cpu_func = chol_cpu_codelet_update_u11,
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_func = chol_cublas_codelet_update_u11,
  30. #endif
  31. .nbuffers = 1,
  32. .model = &chol_model_11
  33. };
  34. static starpu_codelet cl21 =
  35. {
  36. .where = STARPU_CPU|STARPU_CUDA,
  37. .cpu_func = chol_cpu_codelet_update_u21,
  38. #ifdef STARPU_USE_CUDA
  39. .cuda_func = chol_cublas_codelet_update_u21,
  40. #endif
  41. .nbuffers = 2,
  42. .model = &chol_model_21
  43. };
  44. static starpu_codelet cl22 =
  45. {
  46. .where = STARPU_CPU|STARPU_CUDA,
  47. .cpu_func = chol_cpu_codelet_update_u22,
  48. #ifdef STARPU_USE_CUDA
  49. .cuda_func = chol_cublas_codelet_update_u22,
  50. #endif
  51. .nbuffers = 3,
  52. .model = &chol_model_22
  53. };
  54. /* Returns the MPI node number where data indexes index is */
  55. int my_distrib(int x, int y, int nb_nodes) {
  56. return (x+y) % nb_nodes;
  57. }
  58. /*
  59. * code to bootstrap the factorization
  60. * and construct the DAG
  61. */
  62. static void dw_cholesky(float ***matA, unsigned size, unsigned ld, unsigned nblocks, int rank, int nodes)
  63. {
  64. struct timeval start;
  65. struct timeval end;
  66. starpu_data_handle **data_handles;
  67. int x, y;
  68. /* create all the DAG nodes */
  69. unsigned i,j,k;
  70. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  71. for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle));
  72. gettimeofday(&start, NULL);
  73. for(x = 0; x < nblocks ; x++) {
  74. for (y = 0; y < nblocks; y++) {
  75. int mpi_rank = my_distrib(x, y, nodes);
  76. if (mpi_rank == rank) {
  77. //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
  78. starpu_matrix_data_register(&data_handles[x][y], 0, (uintptr_t)matA[x][y],
  79. ld, size/nblocks, size/nblocks, sizeof(float));
  80. }
  81. /* TODO: make better test to only registering what is needed */
  82. else {
  83. /* I don't own that index, but will need it for my computations */
  84. //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
  85. starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
  86. ld, size/nblocks, size/nblocks, sizeof(float));
  87. }
  88. if (data_handles[x][y])
  89. {
  90. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  91. starpu_data_set_tag(data_handles[x][y], (y*nblocks)+x);
  92. }
  93. }
  94. }
  95. for (k = 0; k < nblocks; k++)
  96. {
  97. int prio = STARPU_DEFAULT_PRIO;
  98. if (!noprio) prio = STARPU_MAX_PRIO;
  99. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,
  100. STARPU_PRIORITY, prio,
  101. STARPU_RW, data_handles[k][k],
  102. 0);
  103. for (j = k+1; j<nblocks; j++)
  104. {
  105. prio = STARPU_DEFAULT_PRIO;
  106. if (!noprio&& (j == k+1)) prio = STARPU_MAX_PRIO;
  107. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,
  108. STARPU_PRIORITY, prio,
  109. STARPU_R, data_handles[k][k],
  110. STARPU_RW, data_handles[k][j],
  111. 0);
  112. for (i = k+1; i<nblocks; i++)
  113. {
  114. if (i <= j)
  115. {
  116. prio = STARPU_DEFAULT_PRIO;
  117. if (!noprio && (i == k + 1) && (j == k +1) ) prio = STARPU_MAX_PRIO;
  118. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,
  119. STARPU_PRIORITY, prio,
  120. STARPU_R, data_handles[k][i],
  121. STARPU_R, data_handles[k][j],
  122. STARPU_RW, data_handles[i][j],
  123. 0);
  124. }
  125. }
  126. }
  127. }
  128. starpu_task_wait_for_all();
  129. for(x = 0; x < nblocks ; x++) {
  130. for (y = 0; y < nblocks; y++) {
  131. if (data_handles[x][y])
  132. starpu_data_unregister(data_handles[x][y]);
  133. }
  134. free(data_handles[x]);
  135. }
  136. free(data_handles);
  137. gettimeofday(&end, NULL);
  138. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  139. fprintf(stderr, "[%d] Computation took (in ms)\n", rank);
  140. fprintf(stdout, "%2.2f\n", timing/1000);
  141. double flop = (1.0f*size*size*size)/3.0f;
  142. fprintf(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  143. }
  144. int main(int argc, char **argv)
  145. {
  146. /* create a simple definite positive symetric matrix example
  147. *
  148. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  149. * */
  150. float ***bmat;
  151. int rank, nodes;
  152. parse_args(argc, argv);
  153. starpu_init(NULL);
  154. starpu_mpi_initialize_extended(&rank, &nodes);
  155. starpu_helper_cublas_init();
  156. unsigned i,j,x,y;
  157. bmat = malloc(nblocks * sizeof(float *));
  158. for(x=0 ; x<nblocks ; x++)
  159. {
  160. bmat[x] = malloc(nblocks * sizeof(float *));
  161. for(y=0 ; y<nblocks ; y++)
  162. {
  163. int mpi_rank = my_distrib(x, y, nodes);
  164. if (mpi_rank == rank) {
  165. starpu_malloc((void **)&bmat[x][y], BLOCKSIZE*BLOCKSIZE*sizeof(float));
  166. for (i = 0; i < BLOCKSIZE; i++)
  167. {
  168. for (j = 0; j < BLOCKSIZE; j++)
  169. {
  170. bmat[x][y][j +i*BLOCKSIZE] = (1.0f/(1.0f+(i+(x*BLOCKSIZE)+j+(y*BLOCKSIZE)))) + ((i+(x*BLOCKSIZE) == j+(y*BLOCKSIZE))?1.0f*size:0.0f);
  171. //mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
  172. }
  173. }
  174. }
  175. }
  176. }
  177. dw_cholesky(bmat, size, size/nblocks, nblocks, rank, nodes);
  178. starpu_mpi_shutdown();
  179. for(x=0 ; x<nblocks ; x++)
  180. {
  181. for(y=0 ; y<nblocks ; y++)
  182. {
  183. int mpi_rank = my_distrib(x, y, nodes);
  184. if (mpi_rank == rank) {
  185. starpu_free((void *)bmat[x][y]);
  186. }
  187. }
  188. free(bmat[x]);
  189. }
  190. free(bmat);
  191. starpu_helper_cublas_shutdown();
  192. starpu_shutdown();
  193. return 0;
  194. }