123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- ##################
- # Performance Model Version
- 45
- ####################
- # COMBs
- # number of combinations
- 4
- ####################
- # COMB_3
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
- 0
- ####################
- # DEV_0
- # device id
- 0
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cpu0_impl0 (Comb3)
- # number of entries
- 8
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # not multiple-regression-base
- 0
- # hash size flops mean (us) dev (us) sum sum2 n
- 492beed5 33177600 7.077888e+09 3.328725e+05 1.185902e+04 2.563119e+07 8.542747e+12 77
- 9c6670ef 29491200 7.077888e+09 3.328725e+05 1.185902e+04 2.563119e+07 8.542747e+12 77
- c00cf6b7 29491200 7.077888e+09 3.328725e+05 1.185902e+04 2.563119e+07 8.542747e+12 77
- 78a2cc08 29491200 7.077888e+09 3.328725e+05 1.185902e+04 2.563119e+07 8.542747e+12 77
- a7cdf15b 44236800 1.415578e+10 6.657450e+05 2.371804e+04 5.126238e+07 3.417099e+13 77
- 24c84a50 11059200 1.769472e+09 8.321812e+04 2.964755e+03 6.407798e+06 5.339217e+11 77
- 0b0b0ce8 3686400 2.621440e+08 1.421718e+04 3.409134e+02 9.098993e+05 1.294364e+10 64
- 4220e23d 14745600 2.097152e+09 1.008105e+05 2.361630e+03 8.064841e+06 8.134670e+11 80
- ####################
- # COMB_0
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
- 1
- ####################
- # DEV_0
- # device id
- 0
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda0_impl0 (Comb0)
- # number of entries
- 8
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # not multiple-regression-base
- 0
- # hash size flops mean (us) dev (us) sum sum2 n
- 492beed5 33177600 7.077888e+09 1.123499e+04 6.785566e+01 1.190909e+06 1.338033e+10 106
- 9c6670ef 29491200 7.077888e+09 1.123499e+04 6.785566e+01 1.190909e+06 1.338033e+10 106
- c00cf6b7 29491200 7.077888e+09 1.123499e+04 6.785566e+01 1.190909e+06 1.338033e+10 106
- 78a2cc08 29491200 7.077888e+09 1.123499e+04 6.785566e+01 1.190909e+06 1.338033e+10 106
- a7cdf15b 44236800 1.415578e+10 2.246998e+04 1.357113e+02 2.381818e+06 5.352132e+10 106
- 24c84a50 11059200 1.769472e+09 2.808747e+03 1.696392e+01 2.977272e+05 8.362706e+08 106
- 0b0b0ce8 3686400 2.621440e+08 6.738679e+02 4.393713e+01 6.873452e+04 4.651489e+07 102
- 4220e23d 14745600 2.097152e+09 5.557425e+03 3.241733e+02 5.835297e+05 3.253957e+09 105
- ####################
- # COMB_2
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
- 1
- ####################
- # DEV_0
- # device id
- 1
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda1_impl0 (Comb2)
- # number of entries
- 8
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # not multiple-regression-base
- 0
- # hash size flops mean (us) dev (us) sum sum2 n
- 492beed5 33177600 7.077888e+09 1.123077e+04 9.504466e+01 1.179231e+06 1.324463e+10 105
- 9c6670ef 29491200 7.077888e+09 1.123077e+04 9.504466e+01 1.179231e+06 1.324463e+10 105
- c00cf6b7 29491200 7.077888e+09 1.123077e+04 9.504466e+01 1.179231e+06 1.324463e+10 105
- 78a2cc08 29491200 7.077888e+09 1.123077e+04 9.504466e+01 1.179231e+06 1.324463e+10 105
- a7cdf15b 44236800 1.415578e+10 2.246154e+04 1.900893e+02 2.358462e+06 5.297852e+10 105
- 24c84a50 11059200 1.769472e+09 2.807693e+03 2.376116e+01 2.948078e+05 8.277894e+08 105
- 0b0b0ce8 3686400 2.621440e+08 6.672056e+02 3.376608e+01 6.805497e+04 4.552295e+07 102
- 4220e23d 14745600 2.097152e+09 5.553764e+03 3.500896e+02 5.831453e+05 3.251521e+09 105
- ####################
- # COMB_1
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
- 1
- ####################
- # DEV_0
- # device id
- 2
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda2_impl0 (Comb1)
- # number of entries
- 8
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # not multiple-regression-base
- 0
- # hash size flops mean (us) dev (us) sum sum2 n
- 492beed5 33177600 7.077888e+09 1.124174e+04 2.629960e+01 1.180383e+06 1.326963e+10 105
- 9c6670ef 29491200 7.077888e+09 1.124174e+04 2.629960e+01 1.180383e+06 1.326963e+10 105
- c00cf6b7 29491200 7.077888e+09 1.124174e+04 2.629960e+01 1.180383e+06 1.326963e+10 105
- 78a2cc08 29491200 7.077888e+09 1.124174e+04 2.629960e+01 1.180383e+06 1.326963e+10 105
- a7cdf15b 44236800 1.415578e+10 2.248348e+04 5.259920e+01 2.360766e+06 5.307852e+10 105
- 24c84a50 11059200 1.769472e+09 2.810435e+03 6.574900e+00 2.950958e+05 8.293519e+08 105
- 0b0b0ce8 3686400 2.621440e+08 6.002221e+02 2.259043e+01 6.242310e+04 3.752080e+07 104
- 4220e23d 14745600 2.097152e+09 5.577722e+03 1.615194e+02 5.912385e+05 3.300529e+09 106
|