chol_model_22.mirage 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 4
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. d46431bb 1228800 6.553600e+07 3.262643e+03 7.810468e+01 1.532463e+07 5.002746e+10 4697
  39. 24c84a50 11059200 1.769472e+09 8.778020e+04 9.598441e+02 2.889724e+08 2.536909e+13 3292
  40. f0ac7beb 4915200 5.242880e+08 2.647095e+04 4.073263e+02 4.762124e+07 1.260878e+12 1799
  41. ####################
  42. # COMB_1
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb1)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. d46431bb 1228800 6.553600e+07 2.011248e+02 1.498037e+01 1.633334e+06 3.303264e+08 8121
  72. 24c84a50 11059200 1.769472e+09 2.805491e+03 6.931361e+01 3.683329e+07 1.033985e+11 13129
  73. f0ac7beb 4915200 5.242880e+08 8.944354e+02 3.828761e+01 5.687714e+06 5.096615e+09 6359
  74. ####################
  75. # COMB_2
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 1
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda1_impl0 (Comb2)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. d46431bb 1228800 6.553600e+07 2.004836e+02 1.337883e+01 1.620709e+06 3.263726e+08 8084
  105. 24c84a50 11059200 1.769472e+09 2.828590e+03 6.702999e+01 3.650578e+07 1.033178e+11 12906
  106. f0ac7beb 4915200 5.242880e+08 9.090465e+02 3.898196e+01 5.691540e+06 5.183389e+09 6261
  107. ####################
  108. # COMB_3
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb3)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. d46431bb 1228800 6.553600e+07 1.603761e+02 1.178063e+01 1.522450e+06 2.454821e+08 9493
  138. 24c84a50 11059200 1.769472e+09 2.828209e+03 7.003112e+01 3.675541e+07 1.040157e+11 12996
  139. f0ac7beb 4915200 5.242880e+08 8.858930e+02 3.323656e+01 5.675030e+06 5.034546e+09 6406