################## # Performance Model Version 45 #################### # COMBs # number of combinations 4 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb3) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 8.869540e+04 4.010843e+03 1.765039e+07 1.568709e+12 199 d39bff17 6553600 0.000000e+00 2.736718e+04 1.452565e+03 3.886139e+06 1.066523e+11 142 2c1922b7 1638400 0.000000e+00 4.006489e+03 3.502972e+02 8.493756e+05 3.429028e+09 212 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb1) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 7.250005e+03 1.530886e+03 8.555006e+05 6.478930e+09 118 d39bff17 6553600 0.000000e+00 2.060505e+03 3.149423e+02 4.265246e+05 8.993882e+08 207 2c1922b7 1638400 0.000000e+00 5.794447e+02 1.035504e+02 9.155226e+04 5.474365e+07 158 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb0) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 6.906255e+03 1.105050e+03 1.042844e+06 7.386541e+09 151 d39bff17 6553600 0.000000e+00 2.044032e+03 3.248232e+02 3.863220e+05 8.095958e+08 189 2c1922b7 1638400 0.000000e+00 6.103626e+02 1.085471e+02 1.062031e+05 6.687255e+07 174 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb2) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 6.859160e+03 1.144150e+03 1.008296e+06 7.108501e+09 147 d39bff17 6553600 0.000000e+00 2.022724e+03 3.006626e+02 4.308402e+05 8.907256e+08 213 2c1922b7 1638400 0.000000e+00 5.771721e+02 9.999833e+01 9.638774e+04 5.730226e+07 167