################## # Performance Model Version 45 #################### # COMBs # number of combinations 4 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb3) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n 492beed5 33177600 7.077888e+09 3.328725e+05 1.185902e+04 2.563119e+07 8.542747e+12 77 0b0b0ce8 3686400 2.621440e+08 1.421718e+04 3.409134e+02 9.098993e+05 1.294364e+10 64 4220e23d 14745600 2.097152e+09 1.008105e+05 2.361630e+03 8.064841e+06 8.134670e+11 80 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb0) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n 492beed5 33177600 7.077888e+09 1.123499e+04 6.785566e+01 1.190909e+06 1.338033e+10 106 0b0b0ce8 3686400 2.621440e+08 6.738679e+02 4.393713e+01 6.873452e+04 4.651489e+07 102 4220e23d 14745600 2.097152e+09 5.557425e+03 3.241733e+02 5.835297e+05 3.253957e+09 105 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb2) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n 492beed5 33177600 7.077888e+09 1.123077e+04 9.504466e+01 1.179231e+06 1.324463e+10 105 0b0b0ce8 3686400 2.621440e+08 6.672056e+02 3.376608e+01 6.805497e+04 4.552295e+07 102 4220e23d 14745600 2.097152e+09 5.553764e+03 3.500896e+02 5.831453e+05 3.251521e+09 105 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb1) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n 492beed5 33177600 7.077888e+09 1.124174e+04 2.629960e+01 1.180383e+06 1.326963e+10 105 0b0b0ce8 3686400 2.621440e+08 6.002221e+02 2.259043e+01 6.242310e+04 3.752080e+07 104 4220e23d 14745600 2.097152e+09 5.577722e+03 1.615194e+02 5.912385e+05 3.300529e+09 106