################## # Performance Model Version 45 #################### # COMBs # number of combinations 5 #################### # COMB_4 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb4) # number of entries 4 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 3.402547e+04 6.005726e+03 7.111323e+06 2.495045e+11 209 2c1922b7 1638400 0.000000e+00 6.443940e+03 1.476966e+03 1.610985e+05 1.092645e+09 25 d39bff17 6553600 0.000000e+00 1.041247e+04 1.992240e+03 3.092503e+06 3.337940e+10 297 0e8bce2b 33177600 0.000000e+00 1.103734e+05 1.699353e+04 1.037510e+07 1.172281e+12 94 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb1) # number of entries 4 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 3.238292e+03 4.902889e+02 6.768030e+05 2.241926e+09 209 2c1922b7 1638400 0.000000e+00 5.889641e+02 1.063542e+02 1.272162e+05 7.736903e+07 216 d39bff17 6553600 0.000000e+00 1.349909e+03 1.936514e+02 2.942801e+05 4.054266e+08 218 0e8bce2b 33177600 0.000000e+00 7.038455e+03 8.353918e+02 1.182460e+06 8.439938e+09 168 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb2) # number of entries 4 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 3.179744e+03 4.016259e+02 6.804652e+05 2.198224e+09 214 2c1922b7 1638400 0.000000e+00 5.796961e+02 1.048897e+02 1.199971e+05 7.183924e+07 207 d39bff17 6553600 0.000000e+00 1.343917e+03 2.039127e+02 2.244341e+05 3.085646e+08 167 0e8bce2b 33177600 0.000000e+00 6.913467e+03 8.366528e+02 1.244424e+06 8.729283e+09 180 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 3 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda3_impl0 (Comb3) # number of entries 4 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 3.362936e+03 5.457359e+02 6.524096e+05 2.251791e+09 194 2c1922b7 1638400 0.000000e+00 5.405600e+02 9.344101e+01 1.513568e+05 8.426217e+07 280 d39bff17 6553600 0.000000e+00 1.275634e+03 1.830051e+02 2.270629e+05 2.956105e+08 178 0e8bce2b 33177600 0.000000e+00 6.852169e+03 8.897789e+02 8.291125e+05 5.777016e+09 121 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb0) # number of entries 4 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # not multiple-regression-base 0 # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 14745600 0.000000e+00 3.306190e+03 4.921154e+02 7.009122e+05 2.368690e+09 212 2c1922b7 1638400 0.000000e+00 5.641572e+02 1.012475e+02 1.376544e+05 8.015997e+07 244 d39bff17 6553600 0.000000e+00 1.355727e+03 1.656730e+02 2.331851e+05 3.208564e+08 172 0e8bce2b 33177600 0.000000e+00 6.732998e+03 6.928655e+02 1.144610e+06 7.788266e+09 170