/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2008-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria * Copyright (C) 2010 Mehdi Juhoor * Copyright (C) 2011 Télécom-SudParis * Copyright (C) 2013 Thibaut Lambert * Copyright (C) 2016 Uppsala University * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ #include #include #include #include #include #include #include #include #include "driver_cuda.h" #include #ifdef HAVE_CUDA_GL_INTEROP_H #include #endif #ifdef HAVE_LIBNVIDIA_ML #include #endif #include #include #include #include #include #ifdef STARPU_SIMGRID #include #endif #ifdef STARPU_USE_CUDA #if CUDART_VERSION >= 5000 /* Avoid letting our streams spuriously synchonize with the NULL stream */ #define starpu_cudaStreamCreate(stream) cudaStreamCreateWithFlags(stream, cudaStreamNonBlocking) #else #define starpu_cudaStreamCreate(stream) cudaStreamCreate(stream) #endif /* At least CUDA 4.2 still didn't have working memcpy3D */ #if CUDART_VERSION < 5000 #define BUGGED_MEMCPY3D #endif #endif /* the number of CUDA devices */ static int ncudagpus = -1; static size_t global_mem[STARPU_MAXCUDADEVS]; #ifdef HAVE_LIBNVIDIA_ML static nvmlDevice_t nvmlDev[STARPU_MAXCUDADEVS]; #endif int _starpu_cuda_bus_ids[STARPU_MAXCUDADEVS+STARPU_MAXNUMANODES][STARPU_MAXCUDADEVS+STARPU_MAXNUMANODES]; #ifdef STARPU_USE_CUDA static cudaStream_t streams[STARPU_NMAXWORKERS]; static char used_stream[STARPU_NMAXWORKERS]; static cudaStream_t out_transfer_streams[STARPU_MAXCUDADEVS]; static cudaStream_t in_transfer_streams[STARPU_MAXCUDADEVS]; /* Note: streams are not thread-safe, so we define them for each CUDA worker * emitting a GPU-GPU transfer */ static cudaStream_t in_peer_transfer_streams[STARPU_MAXCUDADEVS][STARPU_MAXCUDADEVS]; static struct cudaDeviceProp props[STARPU_MAXCUDADEVS]; #ifndef STARPU_SIMGRID static cudaEvent_t task_events[STARPU_NMAXWORKERS][STARPU_MAX_PIPELINE]; #endif #endif /* STARPU_USE_CUDA */ #ifdef STARPU_SIMGRID static unsigned task_finished[STARPU_NMAXWORKERS][STARPU_MAX_PIPELINE]; static starpu_pthread_mutex_t cuda_alloc_mutex = STARPU_PTHREAD_MUTEX_INITIALIZER; #endif /* STARPU_SIMGRID */ static enum initialization cuda_device_init[STARPU_MAXCUDADEVS]; static int cuda_device_users[STARPU_MAXCUDADEVS]; static starpu_pthread_mutex_t cuda_device_init_mutex[STARPU_MAXCUDADEVS]; static starpu_pthread_cond_t cuda_device_init_cond[STARPU_MAXCUDADEVS]; void _starpu_cuda_init(void) { unsigned i; for (i = 0; i < STARPU_MAXCUDADEVS; i++) { STARPU_PTHREAD_MUTEX_INIT(&cuda_device_init_mutex[i], NULL); STARPU_PTHREAD_COND_INIT(&cuda_device_init_cond[i], NULL); } } static size_t _starpu_cuda_get_global_mem_size(unsigned devid) { return global_mem[devid]; } void _starpu_cuda_discover_devices (struct _starpu_machine_config *config) { /* Discover the number of CUDA devices. Fill the result in CONFIG. */ #ifdef STARPU_SIMGRID config->topology.nhwdevices[STARPU_CUDA_WORKER] = _starpu_simgrid_get_nbhosts("CUDA"); #else int cnt; cudaError_t cures; cures = cudaGetDeviceCount (&cnt); if (STARPU_UNLIKELY(cures != cudaSuccess)) cnt = 0; config->topology.nhwdevices[STARPU_CUDA_WORKER] = cnt; #ifdef HAVE_LIBNVIDIA_ML nvmlInit(); #endif #endif } /* In case we want to cap the amount of memory available on the GPUs by the * mean of the STARPU_LIMIT_CUDA_MEM, we decrease the value of * global_mem[devid] which is the value returned by * _starpu_cuda_get_global_mem_size() to indicate how much memory can * be allocated on the device */ static void _starpu_cuda_limit_gpu_mem_if_needed(unsigned devid) { starpu_ssize_t limit; size_t STARPU_ATTRIBUTE_UNUSED totalGlobalMem = 0; size_t STARPU_ATTRIBUTE_UNUSED to_waste = 0; #ifdef STARPU_SIMGRID totalGlobalMem = _starpu_simgrid_get_memsize("CUDA", devid); #elif defined(STARPU_USE_CUDA) /* Find the size of the memory on the device */ totalGlobalMem = props[devid].totalGlobalMem; #endif limit = starpu_get_env_number("STARPU_LIMIT_CUDA_MEM"); if (limit == -1) { char name[30]; snprintf(name, sizeof(name), "STARPU_LIMIT_CUDA_%u_MEM", devid); limit = starpu_get_env_number(name); } #if defined(STARPU_USE_CUDA) || defined(STARPU_SIMGRID) if (limit == -1) { /* Use 90% of the available memory by default. */ limit = totalGlobalMem / (1024*1024) * 0.9; } #endif global_mem[devid] = limit * 1024*1024; #ifdef STARPU_USE_CUDA /* How much memory to waste ? */ to_waste = totalGlobalMem - global_mem[devid]; props[devid].totalGlobalMem -= to_waste; #endif /* STARPU_USE_CUDA */ _STARPU_DEBUG("CUDA device %u: Wasting %ld MB / Limit %ld MB / Total %ld MB / Remains %ld MB\n", devid, (long) to_waste/(1024*1024), (long) limit, (long) totalGlobalMem/(1024*1024), (long) (totalGlobalMem - to_waste)/(1024*1024)); } #ifdef STARPU_USE_CUDA cudaStream_t starpu_cuda_get_local_in_transfer_stream() { int worker = starpu_worker_get_id_check(); int devid = starpu_worker_get_devid(worker); cudaStream_t stream; stream = in_transfer_streams[devid]; STARPU_ASSERT(stream); return stream; } cudaStream_t starpu_cuda_get_in_transfer_stream(unsigned dst_node) { int dst_devid = starpu_memory_node_get_devid(dst_node); cudaStream_t stream; stream = in_transfer_streams[dst_devid]; STARPU_ASSERT(stream); return stream; } cudaStream_t starpu_cuda_get_local_out_transfer_stream() { int worker = starpu_worker_get_id_check(); int devid = starpu_worker_get_devid(worker); cudaStream_t stream; stream = out_transfer_streams[devid]; STARPU_ASSERT(stream); return stream; } cudaStream_t starpu_cuda_get_out_transfer_stream(unsigned src_node) { int src_devid = starpu_memory_node_get_devid(src_node); cudaStream_t stream; stream = out_transfer_streams[src_devid]; STARPU_ASSERT(stream); return stream; } cudaStream_t starpu_cuda_get_peer_transfer_stream(unsigned src_node, unsigned dst_node) { int src_devid = starpu_memory_node_get_devid(src_node); int dst_devid = starpu_memory_node_get_devid(dst_node); cudaStream_t stream; stream = in_peer_transfer_streams[src_devid][dst_devid]; STARPU_ASSERT(stream); return stream; } cudaStream_t starpu_cuda_get_local_stream(void) { int worker = starpu_worker_get_id_check(); used_stream[worker] = 1; return streams[worker]; } const struct cudaDeviceProp *starpu_cuda_get_device_properties(unsigned workerid) { struct _starpu_machine_config *config = _starpu_get_machine_config(); unsigned devid = config->workers[workerid].devid; return &props[devid]; } #endif /* STARPU_USE_CUDA */ void starpu_cuda_set_device(unsigned devid STARPU_ATTRIBUTE_UNUSED) { #ifdef STARPU_SIMGRID STARPU_ABORT(); #else cudaError_t cures; struct starpu_conf *conf = &_starpu_get_machine_config()->conf; #if !defined(STARPU_HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H) unsigned i; #endif #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (conf->n_cuda_opengl_interoperability) { _STARPU_MSG("OpenGL interoperability was requested, but StarPU was built with multithread GPU control support, please reconfigure with --disable-cuda-memcpy-peer but that will disable the memcpy-peer optimizations\n"); STARPU_ABORT(); } #elif !defined(HAVE_CUDA_GL_INTEROP_H) if (conf->n_cuda_opengl_interoperability) { _STARPU_MSG("OpenGL interoperability was requested, but cuda_gl_interop.h could not be compiled, please make sure that OpenGL headers were available before ./configure run."); STARPU_ABORT(); } #else for (i = 0; i < conf->n_cuda_opengl_interoperability; i++) { if (conf->cuda_opengl_interoperability[i] == devid) { cures = cudaGLSetGLDevice(devid); goto done; } } #endif cures = cudaSetDevice(devid); #if !defined(STARPU_HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H) done: #endif #ifdef STARPU_OPENMP /* When StarPU is used as Open Runtime support, * starpu_omp_shutdown() will usually be called from a * destructor, in which case cudaThreadExit() reports a * cudaErrorCudartUnloading here. There should not * be any remaining tasks running at this point so * we can probably ignore it without much consequences. */ if (STARPU_UNLIKELY(cures && cures != cudaErrorCudartUnloading)) STARPU_CUDA_REPORT_ERROR(cures); #else if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); #endif /* STARPU_OPENMP */ #endif } static void init_device_context(unsigned devid, unsigned memnode) { #ifndef STARPU_SIMGRID cudaError_t cures; /* TODO: cudaSetDeviceFlag(cudaDeviceMapHost) */ starpu_cuda_set_device(devid); #endif /* !STARPU_SIMGRID */ STARPU_PTHREAD_MUTEX_LOCK(&cuda_device_init_mutex[devid]); cuda_device_users[devid]++; if (cuda_device_init[devid] == UNINITIALIZED) /* Nobody started initialization yet, do it */ cuda_device_init[devid] = CHANGING; else { /* Somebody else is doing initialization, wait for it */ while (cuda_device_init[devid] != INITIALIZED) STARPU_PTHREAD_COND_WAIT(&cuda_device_init_cond[devid], &cuda_device_init_mutex[devid]); STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_device_init_mutex[devid]); return; } STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_device_init_mutex[devid]); #ifndef STARPU_SIMGRID #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (starpu_get_env_number("STARPU_ENABLE_CUDA_GPU_GPU_DIRECT") != 0) { int nworkers = starpu_worker_get_count(); int workerid; for (workerid = 0; workerid < nworkers; workerid++) { struct _starpu_worker *worker = _starpu_get_worker_struct(workerid); if (worker->arch == STARPU_CUDA_WORKER && worker->devid != devid) { int can; cures = cudaDeviceCanAccessPeer(&can, devid, worker->devid); (void) cudaGetLastError(); if (!cures && can) { cures = cudaDeviceEnablePeerAccess(worker->devid, 0); (void) cudaGetLastError(); if (!cures) { _STARPU_DEBUG("Enabled GPU-Direct %d -> %d\n", worker->devid, devid); /* direct copies are made from the destination, see link_supports_direct_transfers */ starpu_bus_set_direct(_starpu_cuda_bus_ids[worker->devid+STARPU_MAXNUMANODES][devid+STARPU_MAXNUMANODES], 1); } } } } } #endif /* force CUDA to initialize the context for real */ cures = cudaFree(0); if (STARPU_UNLIKELY(cures)) { if (cures == cudaErrorDevicesUnavailable) { _STARPU_MSG("All CUDA-capable devices are busy or unavailable\n"); exit(77); } STARPU_CUDA_REPORT_ERROR(cures); } cures = cudaGetDeviceProperties(&props[devid], devid); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (props[devid].computeMode == cudaComputeModeExclusive) { _STARPU_MSG("CUDA is in EXCLUSIVE-THREAD mode, but StarPU was built with multithread GPU control support, please either ask your administrator to use EXCLUSIVE-PROCESS mode (which should really be fine), or reconfigure with --disable-cuda-memcpy-peer but that will disable the memcpy-peer optimizations\n"); STARPU_ABORT(); } #endif cures = starpu_cudaStreamCreate(&in_transfer_streams[devid]); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); cures = starpu_cudaStreamCreate(&out_transfer_streams[devid]); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); int i; for (i = 0; i < ncudagpus; i++) { cures = starpu_cudaStreamCreate(&in_peer_transfer_streams[i][devid]); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); } #endif /* !STARPU_SIMGRID */ STARPU_PTHREAD_MUTEX_LOCK(&cuda_device_init_mutex[devid]); cuda_device_init[devid] = INITIALIZED; STARPU_PTHREAD_COND_BROADCAST(&cuda_device_init_cond[devid]); STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_device_init_mutex[devid]); _starpu_cuda_limit_gpu_mem_if_needed(devid); _starpu_memory_manager_set_global_memory_size(memnode, _starpu_cuda_get_global_mem_size(devid)); } static void init_worker_context(unsigned workerid, unsigned devid STARPU_ATTRIBUTE_UNUSED) { int j; #ifdef STARPU_SIMGRID for (j = 0; j < STARPU_MAX_PIPELINE; j++) task_finished[workerid][j] = 0; #else /* !STARPU_SIMGRID */ cudaError_t cures; starpu_cuda_set_device(devid); for (j = 0; j < STARPU_MAX_PIPELINE; j++) { cures = cudaEventCreateWithFlags(&task_events[workerid][j], cudaEventDisableTiming); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); } cures = starpu_cudaStreamCreate(&streams[workerid]); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); #endif /* !STARPU_SIMGRID */ } #ifndef STARPU_SIMGRID static void deinit_device_context(unsigned devid) { int i; starpu_cuda_set_device(devid); cudaStreamDestroy(in_transfer_streams[devid]); cudaStreamDestroy(out_transfer_streams[devid]); for (i = 0; i < ncudagpus; i++) { cudaStreamDestroy(in_peer_transfer_streams[i][devid]); } } #endif /* !STARPU_SIMGRID */ static void deinit_worker_context(unsigned workerid, unsigned devid STARPU_ATTRIBUTE_UNUSED) { unsigned j; #ifdef STARPU_SIMGRID for (j = 0; j < STARPU_MAX_PIPELINE; j++) task_finished[workerid][j] = 0; #else /* STARPU_SIMGRID */ starpu_cuda_set_device(devid); for (j = 0; j < STARPU_MAX_PIPELINE; j++) cudaEventDestroy(task_events[workerid][j]); cudaStreamDestroy(streams[workerid]); #endif /* STARPU_SIMGRID */ } /* Return the number of devices usable in the system. * The value returned cannot be greater than MAXCUDADEVS */ unsigned _starpu_get_cuda_device_count(void) { int cnt; #ifdef STARPU_SIMGRID cnt = _starpu_simgrid_get_nbhosts("CUDA"); #else cudaError_t cures; cures = cudaGetDeviceCount(&cnt); if (STARPU_UNLIKELY(cures)) return 0; #endif if (cnt > STARPU_MAXCUDADEVS) { _STARPU_MSG("# Warning: %d CUDA devices available. Only %d enabled. Use configure option --enable-maxcudadev=xxx to update the maximum value of supported CUDA devices.\n", cnt, STARPU_MAXCUDADEVS); cnt = STARPU_MAXCUDADEVS; } return (unsigned)cnt; } /* This is run from initialize to determine the number of CUDA devices */ void _starpu_init_cuda(void) { if (ncudagpus < 0) { ncudagpus = _starpu_get_cuda_device_count(); STARPU_ASSERT(ncudagpus <= STARPU_MAXCUDADEVS); } } static int start_job_on_cuda(struct _starpu_job *j, struct _starpu_worker *worker, unsigned char pipeline_idx STARPU_ATTRIBUTE_UNUSED) { STARPU_ASSERT(j); struct starpu_task *task = j->task; int profiling = starpu_profiling_status_get(); STARPU_ASSERT(task); struct starpu_codelet *cl = task->cl; STARPU_ASSERT(cl); _starpu_set_local_worker_key(worker); _starpu_set_current_task(task); if (worker->ntasks == 1) { /* We are alone in the pipeline, the kernel will start now, record it */ _starpu_driver_start_job(worker, j, &worker->perf_arch, 0, profiling); } #if defined(STARPU_HAVE_CUDA_MEMCPY_PEER) && !defined(STARPU_SIMGRID) /* We make sure we do manipulate the proper device */ starpu_cuda_set_device(worker->devid); #endif starpu_cuda_func_t func = _starpu_task_get_cuda_nth_implementation(cl, j->nimpl); STARPU_ASSERT_MSG(func, "when STARPU_CUDA is defined in 'where', cuda_func or cuda_funcs has to be defined"); if (_starpu_get_disable_kernels() <= 0) { _STARPU_TRACE_START_EXECUTING(); #ifdef STARPU_SIMGRID int async = task->cl->cuda_flags[j->nimpl] & STARPU_CUDA_ASYNC; unsigned workerid = worker->workerid; if (cl->flags & STARPU_CODELET_SIMGRID_EXECUTE && !async) func(_STARPU_TASK_GET_INTERFACES(task), task->cl_arg); else if (cl->flags & STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT && !async) { _SIMGRID_TIMER_BEGIN(1); func(_STARPU_TASK_GET_INTERFACES(task), task->cl_arg); _SIMGRID_TIMER_END; } else { struct _starpu_sched_ctx *sched_ctx = _starpu_sched_ctx_get_sched_ctx_for_worker_and_job(worker, j); _starpu_simgrid_submit_job(workerid, sched_ctx->id, j, &worker->perf_arch, NAN, NAN, async ? &task_finished[workerid][pipeline_idx] : NULL); } #else #ifdef HAVE_NVMLDEVICEGETTOTALENERGYCONSUMPTION unsigned long long energy_start = 0; nvmlReturn_t nvmlRet = -1; if (profiling && task->profiling_info) { nvmlRet = nvmlDeviceGetTotalEnergyConsumption(nvmlDev[worker->devid], &energy_start); if (nvmlRet == NVML_SUCCESS) task->profiling_info->energy_consumed = energy_start / 1000.; } #endif func(_STARPU_TASK_GET_INTERFACES(task), task->cl_arg); #endif _STARPU_TRACE_END_EXECUTING(); } return 0; } static void finish_job_on_cuda(struct _starpu_job *j, struct _starpu_worker *worker) { int profiling = starpu_profiling_status_get(); #ifdef HAVE_NVMLDEVICEGETTOTALENERGYCONSUMPTION if (profiling && j->task->profiling_info && j->task->profiling_info->energy_consumed) { unsigned long long energy_end; nvmlReturn_t nvmlRet; nvmlRet = nvmlDeviceGetTotalEnergyConsumption(nvmlDev[worker->devid], &energy_end); #ifdef STARPU_DEVEL #warning TODO: measure idle consumption to subtract it #endif if (nvmlRet == NVML_SUCCESS) j->task->profiling_info->energy_consumed = (energy_end / 1000. - j->task->profiling_info->energy_consumed); } #endif _starpu_set_current_task(NULL); if (worker->pipeline_length) worker->current_tasks[worker->first_task] = NULL; else worker->current_task = NULL; worker->first_task = (worker->first_task + 1) % STARPU_MAX_PIPELINE; worker->ntasks--; _starpu_driver_end_job(worker, j, &worker->perf_arch, 0, profiling); struct _starpu_sched_ctx *sched_ctx = _starpu_sched_ctx_get_sched_ctx_for_worker_and_job(worker, j); if(!sched_ctx) sched_ctx = _starpu_get_sched_ctx_struct(j->task->sched_ctx); if(!sched_ctx->sched_policy) _starpu_driver_update_job_feedback(j, worker, &sched_ctx->perf_arch, profiling); else _starpu_driver_update_job_feedback(j, worker, &worker->perf_arch, profiling); _starpu_push_task_output(j); _starpu_handle_job_termination(j); } /* Execute a job, up to completion for synchronous jobs */ static void execute_job_on_cuda(struct starpu_task *task, struct _starpu_worker *worker) { int workerid = worker->workerid; int res; struct _starpu_job *j = _starpu_get_job_associated_to_task(task); unsigned char pipeline_idx = (worker->first_task + worker->ntasks - 1)%STARPU_MAX_PIPELINE; res = start_job_on_cuda(j, worker, pipeline_idx); if (res) { switch (res) { case -EAGAIN: _STARPU_DISP("ouch, CUDA could not actually run task %p, putting it back...\n", task); _starpu_push_task_to_workers(task); STARPU_ABORT(); default: STARPU_ABORT(); } } #ifndef STARPU_SIMGRID if (!used_stream[workerid]) { used_stream[workerid] = 1; _STARPU_DISP("Warning: starpu_cuda_get_local_stream() was not used to submit kernel to CUDA on worker %d. CUDA will thus introduce a lot of useless synchronizations, which will prevent proper overlapping of data transfers and kernel execution. See the CUDA-specific part of the 'Check List When Performance Are Not There' of the StarPU handbook\n", workerid); } #endif if (task->cl->cuda_flags[j->nimpl] & STARPU_CUDA_ASYNC) { if (worker->pipeline_length == 0) { #ifdef STARPU_SIMGRID _starpu_simgrid_wait_tasks(workerid); #else /* Forced synchronous execution */ cudaStreamSynchronize(starpu_cuda_get_local_stream()); #endif finish_job_on_cuda(j, worker); } else { #ifndef STARPU_SIMGRID /* Record event to synchronize with task termination later */ cudaError_t cures = cudaEventRecord(task_events[workerid][pipeline_idx], starpu_cuda_get_local_stream()); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); #endif #ifdef STARPU_USE_FXT int k; for (k = 0; k < (int) worker->set->nworkers; k++) if (worker->set->workers[k].ntasks == worker->set->workers[k].pipeline_length) break; if (k == (int) worker->set->nworkers) /* Everybody busy */ _STARPU_TRACE_START_EXECUTING(); #endif } } else /* Synchronous execution */ { #if !defined(STARPU_SIMGRID) STARPU_ASSERT_MSG(cudaStreamQuery(starpu_cuda_get_local_stream()) == cudaSuccess, "Unless when using the STARPU_CUDA_ASYNC flag, CUDA codelets have to wait for termination of their kernels on the starpu_cuda_get_local_stream() stream"); #endif finish_job_on_cuda(j, worker); } } /* This is run from the driver to initialize the driver CUDA context */ int _starpu_cuda_driver_init(struct _starpu_worker_set *worker_set) { struct _starpu_worker *worker0 = &worker_set->workers[0]; int lastdevid = -1; unsigned i; _starpu_driver_start(worker0, STARPU_CUDA_WORKER, 0); _starpu_set_local_worker_set_key(worker_set); #ifdef STARPU_USE_FXT for (i = 1; i < worker_set->nworkers; i++) _starpu_worker_start(&worker_set->workers[i], STARPU_CUDA_WORKER, 0); #endif for (i = 0; i < worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; unsigned devid = worker->devid; unsigned memnode = worker->memory_node; if ((int) devid == lastdevid) { #ifdef STARPU_SIMGRID STARPU_ASSERT_MSG(0, "Simgrid mode does not support concurrent kernel execution yet\n"); #endif /* !STARPU_SIMGRID */ /* Already initialized */ continue; } lastdevid = devid; init_device_context(devid, memnode); #ifndef STARPU_SIMGRID if (worker->config->topology.nworker[STARPU_CUDA_WORKER][devid] > 1 && props[devid].concurrentKernels == 0) _STARPU_DISP("Warning: STARPU_NWORKER_PER_CUDA is %u, but CUDA device %u does not support concurrent kernel execution!\n", worker_set->nworkers, devid); #endif /* !STARPU_SIMGRID */ } /* one more time to avoid hacks from third party lib :) */ _starpu_bind_thread_on_cpu(worker0->bindid, worker0->workerid, NULL); for (i = 0; i < worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; unsigned devid = worker->devid; unsigned workerid = worker->workerid; unsigned subdev = i % _starpu_get_machine_config()->topology.nworker[STARPU_CUDA_WORKER][devid]; float size = (float) global_mem[devid] / (1<<30); #ifdef STARPU_SIMGRID const char *devname = "Simgrid"; #else /* get the device's name */ char devname[64]; strncpy(devname, props[devid].name, 63); devname[63] = 0; #endif #if defined(STARPU_HAVE_BUSID) && !defined(STARPU_SIMGRID) #if defined(STARPU_HAVE_DOMAINID) && !defined(STARPU_SIMGRID) #ifdef HAVE_LIBNVIDIA_ML char busid[13]; snprintf(busid, sizeof(busid), "%04x:%02x:%02x.0", props[devid].pciDomainID, props[devid].pciBusID, props[devid].pciDeviceID); nvmlDeviceGetHandleByPciBusId(busid, &nvmlDev[devid]); #endif if (props[devid].pciDomainID) snprintf(worker->name, sizeof(worker->name), "CUDA %u.%u (%s %.1f GiB %04x:%02x:%02x.0)", devid, subdev, devname, size, props[devid].pciDomainID, props[devid].pciBusID, props[devid].pciDeviceID); else #endif snprintf(worker->name, sizeof(worker->name), "CUDA %u.%u (%s %.1f GiB %02x:%02x.0)", devid, subdev, devname, size, props[devid].pciBusID, props[devid].pciDeviceID); #else snprintf(worker->name, sizeof(worker->name), "CUDA %u.%u (%s %.1f GiB)", devid, subdev, devname, size); #endif snprintf(worker->short_name, sizeof(worker->short_name), "CUDA %u.%u", devid, subdev); _STARPU_DEBUG("cuda (%s) dev id %u worker %u thread is ready to run on CPU %d !\n", devname, devid, subdev, worker->bindid); worker->pipeline_length = starpu_get_env_number_default("STARPU_CUDA_PIPELINE", 2); if (worker->pipeline_length > STARPU_MAX_PIPELINE) { _STARPU_DISP("Warning: STARPU_CUDA_PIPELINE is %u, but STARPU_MAX_PIPELINE is only %u", worker->pipeline_length, STARPU_MAX_PIPELINE); worker->pipeline_length = STARPU_MAX_PIPELINE; } #if !defined(STARPU_SIMGRID) && !defined(STARPU_NON_BLOCKING_DRIVERS) if (worker->pipeline_length >= 1) { /* We need non-blocking drivers, to poll for CUDA task * termination */ _STARPU_DISP("Warning: reducing STARPU_CUDA_PIPELINE to 0 because blocking drivers are enabled (and simgrid is not enabled)\n"); worker->pipeline_length = 0; } #endif init_worker_context(workerid, worker->devid); _STARPU_TRACE_WORKER_INIT_END(workerid); } { char thread_name[16]; snprintf(thread_name, sizeof(thread_name), "CUDA %u", worker0->devid); starpu_pthread_setname(thread_name); } /* tell the main thread that this one is ready */ STARPU_PTHREAD_MUTEX_LOCK(&worker0->mutex); worker0->status = STATUS_UNKNOWN; worker0->worker_is_initialized = 1; STARPU_PTHREAD_COND_SIGNAL(&worker0->ready_cond); STARPU_PTHREAD_MUTEX_UNLOCK(&worker0->mutex); /* tell the main thread that this one is ready */ STARPU_PTHREAD_MUTEX_LOCK(&worker_set->mutex); worker_set->set_is_initialized = 1; STARPU_PTHREAD_COND_SIGNAL(&worker_set->ready_cond); STARPU_PTHREAD_MUTEX_UNLOCK(&worker_set->mutex); return 0; } int _starpu_cuda_driver_run_once(struct _starpu_worker_set *worker_set) { struct _starpu_worker *worker0 = &worker_set->workers[0]; struct starpu_task *tasks[worker_set->nworkers], *task; struct _starpu_job *j; int i, res; int idle_tasks, idle_transfers; #ifdef STARPU_SIMGRID starpu_pthread_wait_reset(&worker0->wait); #endif _starpu_set_local_worker_key(worker0); /* First poll for completed jobs */ idle_tasks = 0; idle_transfers = 0; for (i = 0; i < (int) worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; int workerid = worker->workerid; unsigned memnode = worker->memory_node; if (!worker->ntasks) idle_tasks++; if (!worker->task_transferring) idle_transfers++; if (!worker->ntasks && !worker->task_transferring) { /* Even nothing to test */ continue; } /* First test for transfers pending for next task */ task = worker->task_transferring; if (task && worker->nb_buffers_transferred == worker->nb_buffers_totransfer) { STARPU_RMB(); _STARPU_TRACE_END_PROGRESS(memnode); j = _starpu_get_job_associated_to_task(task); _starpu_set_local_worker_key(worker); _starpu_fetch_task_input_tail(task, j, worker); _starpu_set_worker_status(worker, STATUS_UNKNOWN); /* Reset it */ worker->task_transferring = NULL; if (worker->ntasks > 1 && !(task->cl->cuda_flags[j->nimpl] & STARPU_CUDA_ASYNC)) { /* We have to execute a non-asynchronous task but we * still have tasks in the pipeline... Record it to * prevent more tasks from coming, and do it later */ worker->pipeline_stuck = 1; } else { execute_job_on_cuda(task, worker); } _STARPU_TRACE_START_PROGRESS(memnode); } /* Then test for termination of queued tasks */ if (!worker->ntasks) /* No queued task */ continue; if (worker->pipeline_length) task = worker->current_tasks[worker->first_task]; else task = worker->current_task; if (task == worker->task_transferring) /* Next task is still pending transfer */ continue; /* On-going asynchronous task, check for its termination first */ #ifdef STARPU_SIMGRID if (task_finished[workerid][worker->first_task]) #else /* !STARPU_SIMGRID */ cudaError_t cures = cudaEventQuery(task_events[workerid][worker->first_task]); if (cures != cudaSuccess) { STARPU_ASSERT_MSG(cures == cudaErrorNotReady, "CUDA error on task %p, codelet %p (%s): %s (%d)", task, task->cl, _starpu_codelet_get_model_name(task->cl), cudaGetErrorString(cures), cures); } else #endif /* !STARPU_SIMGRID */ { _STARPU_TRACE_END_PROGRESS(memnode); /* Asynchronous task completed! */ _starpu_set_local_worker_key(worker); finish_job_on_cuda(_starpu_get_job_associated_to_task(task), worker); /* See next task if any */ if (worker->ntasks) { if (worker->current_tasks[worker->first_task] != worker->task_transferring) { task = worker->current_tasks[worker->first_task]; j = _starpu_get_job_associated_to_task(task); if (task->cl->cuda_flags[j->nimpl] & STARPU_CUDA_ASYNC) { /* An asynchronous task, it was already * queued, it's now running, record its start time. */ _starpu_driver_start_job(worker, j, &worker->perf_arch, 0, starpu_profiling_status_get()); } else { /* A synchronous task, we have finished * flushing the pipeline, we can now at * last execute it. */ _STARPU_TRACE_EVENT("sync_task"); execute_job_on_cuda(task, worker); _STARPU_TRACE_EVENT("end_sync_task"); worker->pipeline_stuck = 0; } } else /* Data for next task didn't have time to finish transferring :/ */ _STARPU_TRACE_WORKER_START_FETCH_INPUT(NULL, workerid); } #ifdef STARPU_USE_FXT int k; for (k = 0; k < (int) worker_set->nworkers; k++) if (worker_set->workers[k].ntasks) break; if (k == (int) worker_set->nworkers) /* Everybody busy */ _STARPU_TRACE_END_EXECUTING() #endif _STARPU_TRACE_START_PROGRESS(memnode); } if (!worker->pipeline_length || worker->ntasks < worker->pipeline_length) idle_tasks++; } #if defined(STARPU_NON_BLOCKING_DRIVERS) && !defined(STARPU_SIMGRID) if (!idle_tasks) { /* No task ready yet, no better thing to do than waiting */ __starpu_datawizard_progress(1, !idle_transfers); return 0; } #endif /* Something done, make some progress */ res = !idle_tasks || !idle_transfers; res |= __starpu_datawizard_progress(1, 1); /* And pull tasks */ res |= _starpu_get_multi_worker_task(worker_set->workers, tasks, worker_set->nworkers, worker0->memory_node); #ifdef STARPU_SIMGRID if (!res) starpu_pthread_wait_wait(&worker0->wait); #endif for (i = 0; i < (int) worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; unsigned memnode STARPU_ATTRIBUTE_UNUSED = worker->memory_node; task = tasks[i]; if (!task) continue; j = _starpu_get_job_associated_to_task(task); /* can CUDA do that task ? */ if (!_STARPU_MAY_PERFORM(j, CUDA)) { /* this is neither a cuda or a cublas task */ _starpu_worker_refuse_task(worker, task); continue; } /* Fetch data asynchronously */ _STARPU_TRACE_END_PROGRESS(memnode); _starpu_set_local_worker_key(worker); res = _starpu_fetch_task_input(task, j, 1); STARPU_ASSERT(res == 0); _STARPU_TRACE_START_PROGRESS(memnode); } return 0; } int _starpu_cuda_driver_deinit(struct _starpu_worker_set *worker_set) { int lastdevid = -1; unsigned i; _STARPU_TRACE_WORKER_DEINIT_START; for (i = 0; i < worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; unsigned devid = worker->devid; unsigned memnode = worker->memory_node; unsigned usersleft; if ((int) devid == lastdevid) /* Already initialized */ continue; lastdevid = devid; STARPU_PTHREAD_MUTEX_LOCK(&cuda_device_init_mutex[devid]); usersleft = --cuda_device_users[devid]; STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_device_init_mutex[devid]); if (!usersleft) { /* I'm last, deinitialize device */ _starpu_handle_all_pending_node_data_requests(memnode); /* In case there remains some memory that was automatically * allocated by StarPU, we release it now. Note that data * coherency is not maintained anymore at that point ! */ _starpu_free_all_automatically_allocated_buffers(memnode); _starpu_malloc_shutdown(memnode); #ifndef STARPU_SIMGRID deinit_device_context(devid); #endif /* !STARPU_SIMGRID */ } STARPU_PTHREAD_MUTEX_LOCK(&cuda_device_init_mutex[devid]); cuda_device_init[devid] = UNINITIALIZED; STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_device_init_mutex[devid]); } for (i = 0; i < worker_set->nworkers; i++) { struct _starpu_worker *worker = &worker_set->workers[i]; unsigned workerid = worker->workerid; deinit_worker_context(workerid, worker->devid); } worker_set->workers[0].worker_is_initialized = 0; _STARPU_TRACE_WORKER_DEINIT_END(STARPU_CUDA_WORKER); return 0; } void *_starpu_cuda_worker(void *_arg) { struct _starpu_worker_set* worker_set = _arg; unsigned i; _starpu_cuda_driver_init(worker_set); for (i = 0; i < worker_set->nworkers; i++) _STARPU_TRACE_START_PROGRESS(worker_set->workers[i].memory_node); while (_starpu_machine_is_running()) { _starpu_may_pause(); _starpu_cuda_driver_run_once(worker_set); } for (i = 0; i < worker_set->nworkers; i++) _STARPU_TRACE_END_PROGRESS(worker_set->workers[i].memory_node); _starpu_cuda_driver_deinit(worker_set); return NULL; } #ifdef STARPU_USE_CUDA void starpu_cublas_report_error(const char *func, const char *file, int line, int status) { char *errormsg; switch (status) { case CUBLAS_STATUS_SUCCESS: errormsg = "success"; break; case CUBLAS_STATUS_NOT_INITIALIZED: errormsg = "not initialized"; break; case CUBLAS_STATUS_ALLOC_FAILED: errormsg = "alloc failed"; break; case CUBLAS_STATUS_INVALID_VALUE: errormsg = "invalid value"; break; case CUBLAS_STATUS_ARCH_MISMATCH: errormsg = "arch mismatch"; break; case CUBLAS_STATUS_EXECUTION_FAILED: errormsg = "execution failed"; break; case CUBLAS_STATUS_INTERNAL_ERROR: errormsg = "internal error"; break; default: errormsg = "unknown error"; break; } _STARPU_MSG("oops in %s (%s:%d)... %d: %s \n", func, file, line, status, errormsg); STARPU_ABORT(); } void starpu_cuda_report_error(const char *func, const char *file, int line, cudaError_t status) { const char *errormsg = cudaGetErrorString(status); _STARPU_ERROR("oops in %s (%s:%d)... %d: %s \n", func, file, line, status, errormsg); } #endif /* STARPU_USE_CUDA */ #ifdef STARPU_USE_CUDA int starpu_cuda_copy_async_sync(void *src_ptr, unsigned src_node, void *dst_ptr, unsigned dst_node, size_t ssize, cudaStream_t stream, enum cudaMemcpyKind kind) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER int peer_copy = 0; int src_dev = -1, dst_dev = -1; #endif cudaError_t cures = 0; if (kind == cudaMemcpyDeviceToDevice && src_node != dst_node) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER peer_copy = 1; src_dev = starpu_memory_node_get_devid(src_node); dst_dev = starpu_memory_node_get_devid(dst_node); #else STARPU_ABORT(); #endif } if (stream) { double start; starpu_interface_start_driver_copy_async(src_node, dst_node, &start); #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (peer_copy) { cures = cudaMemcpyPeerAsync((char *) dst_ptr, dst_dev, (char *) src_ptr, src_dev, ssize, stream); } else #endif { cures = cudaMemcpyAsync((char *)dst_ptr, (char *)src_ptr, ssize, kind, stream); } (void) cudaGetLastError(); starpu_interface_end_driver_copy_async(src_node, dst_node, start); } /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */ if (stream == NULL || cures) { /* do it in a synchronous fashion */ #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (peer_copy) { cures = cudaMemcpyPeer((char *) dst_ptr, dst_dev, (char *) src_ptr, src_dev, ssize); } else #endif { cures = cudaMemcpy((char *)dst_ptr, (char *)src_ptr, ssize, kind); } (void) cudaGetLastError(); if (!cures) cures = cudaDeviceSynchronize(); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); return 0; } return -EAGAIN; } int starpu_cuda_copy2d_async_sync(void *src_ptr, unsigned src_node, void *dst_ptr, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, cudaStream_t stream, enum cudaMemcpyKind kind) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER int peer_copy = 0; int src_dev = -1, dst_dev = -1; #endif cudaError_t cures = 0; if (kind == cudaMemcpyDeviceToDevice && src_node != dst_node) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER # ifdef BUGGED_MEMCPY3D STARPU_ABORT_MSG("CUDA memcpy 3D peer buggy, but core triggered one?!"); # endif peer_copy = 1; src_dev = starpu_memory_node_get_devid(src_node); dst_dev = starpu_memory_node_get_devid(dst_node); #else STARPU_ABORT_MSG("CUDA memcpy 3D peer not available, but core triggered one ?!"); #endif } #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (peer_copy) { struct cudaMemcpy3DPeerParms p; memset(&p, 0, sizeof(p)); p.srcDevice = src_dev; p.dstDevice = dst_dev; p.srcPtr = make_cudaPitchedPtr((char *)src_ptr, ld_src, blocksize, numblocks); p.dstPtr = make_cudaPitchedPtr((char *)dst_ptr, ld_dst, blocksize, numblocks); p.extent = make_cudaExtent(blocksize, numblocks, 1); if (stream) { double start; starpu_interface_start_driver_copy_async(src_node, dst_node, &start); cures = cudaMemcpy3DPeerAsync(&p, stream); (void) cudaGetLastError(); } /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */ if (stream == NULL || cures) { cures = cudaMemcpy3DPeer(&p); (void) cudaGetLastError(); if (!cures) cures = cudaDeviceSynchronize(); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); return 0; } } else #endif { if (stream) { double start; starpu_interface_start_driver_copy_async(src_node, dst_node, &start); cures = cudaMemcpy2DAsync((char *)dst_ptr, ld_dst, (char *)src_ptr, ld_src, blocksize, numblocks, kind, stream); starpu_interface_end_driver_copy_async(src_node, dst_node, start); } /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */ if (stream == NULL || cures) { cures = cudaMemcpy2D((char *)dst_ptr, ld_dst, (char *)src_ptr, ld_src, blocksize, numblocks, kind); if (!cures) cures = cudaDeviceSynchronize(); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); return 0; } } return -EAGAIN; } #if 0 /* CUDA doesn't seem to be providing a way to set ld2?? */ int starpu_cuda_copy3d_async_sync(void *src_ptr, unsigned src_node, void *dst_ptr, unsigned dst_node, size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src, size_t ld2_dst, cudaStream_t stream, enum cudaMemcpyKind kind) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER int peer_copy = 0; int src_dev = -1, dst_dev = -1; #endif cudaError_t cures = 0; if (kind == cudaMemcpyDeviceToDevice && src_node != dst_node) { #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER peer_copy = 1; src_dev = starpu_memory_node_get_devid(src_node); dst_dev = starpu_memory_node_get_devid(dst_node); #else STARPU_ABORT_MSG("CUDA memcpy 3D peer not available, but core triggered one ?!"); #endif } #ifdef STARPU_HAVE_CUDA_MEMCPY_PEER if (peer_copy) { struct cudaMemcpy3DPeerParms p; memset(&p, 0, sizeof(p)); p.srcDevice = src_dev; p.dstDevice = dst_dev; p.srcPtr = make_cudaPitchedPtr((char *)src_ptr, ld1_src, blocksize, numblocks); p.dstPtr = make_cudaPitchedPtr((char *)dst_ptr, ld1_dst, blocksize, numblocks); // FIXME: how to pass ld2_src / ld2_dst ?? p.extent = make_cudaExtent(blocksize, numblocks_1, numblocks_2); if (stream) { double start; starpu_interface_start_driver_copy_async(src_node, dst_node, &start); cures = cudaMemcpy3DPeerAsync(&p, stream); } /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */ if (stream == NULL || cures) { cures = cudaMemcpy3DPeer(&p); (void) cudaGetLastError(); if (!cures) cures = cudaDeviceSynchronize(); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); return 0; } } else #endif { struct cudaMemcpy3DParms p; memset(&p, 0, sizeof(p)); p.srcPtr = make_cudaPitchedPtr((char *)src_ptr, ld1_src, blocksize, numblocks); p.dstPtr = make_cudaPitchedPtr((char *)dst_ptr, ld1_dst, blocksize, numblocks); // FIXME: how to pass ld2_src / ld2_dst ?? p.extent = make_cudaExtent(blocksize, numblocks, 1); p.kind = kind; if (stream) { double start; starpu_interface_start_driver_copy_async(src_node, dst_node, &start); cures = cudaMemcpy3DAsync(&p, stream); starpu_interface_end_driver_copy_async(src_node, dst_node, start); } /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */ if (stream == NULL || cures) { cures = cudaMemcpy3D(&p); if (!cures) cures = cudaDeviceSynchronize(); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); return 0; } } return -EAGAIN; } #endif #endif /* STARPU_USE_CUDA */ int _starpu_run_cuda(struct _starpu_worker_set *workerarg) { /* Let's go ! */ _starpu_cuda_worker(workerarg); return 0; } int _starpu_cuda_driver_init_from_worker(struct _starpu_worker *worker) { return _starpu_cuda_driver_init(worker->set); } int _starpu_cuda_run_from_worker(struct _starpu_worker *worker) { return _starpu_run_cuda(worker->set); } int _starpu_cuda_driver_run_once_from_worker(struct _starpu_worker *worker) { return _starpu_cuda_driver_run_once(worker->set); } int _starpu_cuda_driver_deinit_from_worker(struct _starpu_worker *worker) { return _starpu_cuda_driver_deinit(worker->set); } #ifdef STARPU_USE_CUDA unsigned _starpu_cuda_test_request_completion(struct _starpu_async_channel *async_channel) { cudaEvent_t event; cudaError_t cures; unsigned success; event = (*async_channel).event.cuda_event; cures = cudaEventQuery(event); success = (cures == cudaSuccess); if (success) cudaEventDestroy(event); else if (cures != cudaErrorNotReady) STARPU_CUDA_REPORT_ERROR(cures); return success; } void _starpu_cuda_wait_request_completion(struct _starpu_async_channel *async_channel) { cudaEvent_t event; cudaError_t cures; event = (*async_channel).event.cuda_event; cures = cudaEventSynchronize(event); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); cures = cudaEventDestroy(event); if (STARPU_UNLIKELY(cures)) STARPU_CUDA_REPORT_ERROR(cures); } int _starpu_cuda_copy_interface_from_cuda_to_cuda(starpu_data_handle_t handle, void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, struct _starpu_data_request *req) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CUDA_RAM); int ret = 1; cudaError_t cures; cudaStream_t stream; const struct starpu_data_copy_methods *copy_methods = handle->ops->copy_methods; /* CUDA - CUDA transfer */ if (!req || starpu_asynchronous_copy_disabled() || starpu_asynchronous_cuda_copy_disabled() || !(copy_methods->cuda_to_cuda_async || copy_methods->any_to_any)) { STARPU_ASSERT(copy_methods->cuda_to_cuda || copy_methods->any_to_any); /* this is not associated to a request so it's synchronous */ if (copy_methods->cuda_to_cuda) copy_methods->cuda_to_cuda(src_interface, src_node, dst_interface, dst_node); else copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, NULL); } else { req->async_channel.node_ops = &_starpu_driver_cuda_node_ops; cures = cudaEventCreateWithFlags(&req->async_channel.event.cuda_event, cudaEventDisableTiming); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); stream = starpu_cuda_get_peer_transfer_stream(src_node, dst_node); if (copy_methods->cuda_to_cuda_async) ret = copy_methods->cuda_to_cuda_async(src_interface, src_node, dst_interface, dst_node, stream); else { STARPU_ASSERT(copy_methods->any_to_any); ret = copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, &req->async_channel); } cures = cudaEventRecord(req->async_channel.event.cuda_event, stream); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); } return ret; } int _starpu_cuda_copy_interface_from_cuda_to_cpu(starpu_data_handle_t handle, void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, struct _starpu_data_request *req) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CPU_RAM); int ret = 1; cudaError_t cures; cudaStream_t stream; const struct starpu_data_copy_methods *copy_methods = handle->ops->copy_methods; /* only the proper CUBLAS thread can initiate this directly ! */ #if !defined(STARPU_HAVE_CUDA_MEMCPY_PEER) STARPU_ASSERT(starpu_worker_get_local_memory_node() == src_node); #endif if (!req || starpu_asynchronous_copy_disabled() || starpu_asynchronous_cuda_copy_disabled() || !(copy_methods->cuda_to_ram_async || copy_methods->any_to_any)) { /* this is not associated to a request so it's synchronous */ STARPU_ASSERT(copy_methods->cuda_to_ram || copy_methods->any_to_any); if (copy_methods->cuda_to_ram) copy_methods->cuda_to_ram(src_interface, src_node, dst_interface, dst_node); else copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, NULL); } else { req->async_channel.node_ops = &_starpu_driver_cuda_node_ops; cures = cudaEventCreateWithFlags(&req->async_channel.event.cuda_event, cudaEventDisableTiming); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); stream = starpu_cuda_get_out_transfer_stream(src_node); if (copy_methods->cuda_to_ram_async) ret = copy_methods->cuda_to_ram_async(src_interface, src_node, dst_interface, dst_node, stream); else { STARPU_ASSERT(copy_methods->any_to_any); ret = copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, &req->async_channel); } cures = cudaEventRecord(req->async_channel.event.cuda_event, stream); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); } return ret; } int _starpu_cuda_copy_interface_from_cpu_to_cuda(starpu_data_handle_t handle, void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, struct _starpu_data_request *req) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CPU_RAM && dst_kind == STARPU_CUDA_RAM); int ret = 1; cudaError_t cures; cudaStream_t stream; const struct starpu_data_copy_methods *copy_methods = handle->ops->copy_methods; /* STARPU_CPU_RAM -> CUBLAS_RAM */ /* only the proper CUBLAS thread can initiate this ! */ #if !defined(STARPU_HAVE_CUDA_MEMCPY_PEER) STARPU_ASSERT(starpu_worker_get_local_memory_node() == dst_node); #endif if (!req || starpu_asynchronous_copy_disabled() || starpu_asynchronous_cuda_copy_disabled() || !(copy_methods->ram_to_cuda_async || copy_methods->any_to_any)) { /* this is not associated to a request so it's synchronous */ STARPU_ASSERT(copy_methods->ram_to_cuda || copy_methods->any_to_any); if (copy_methods->ram_to_cuda) copy_methods->ram_to_cuda(src_interface, src_node, dst_interface, dst_node); else copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, NULL); } else { req->async_channel.node_ops = &_starpu_driver_cuda_node_ops; cures = cudaEventCreateWithFlags(&req->async_channel.event.cuda_event, cudaEventDisableTiming); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); stream = starpu_cuda_get_in_transfer_stream(dst_node); if (copy_methods->ram_to_cuda_async) ret = copy_methods->ram_to_cuda_async(src_interface, src_node, dst_interface, dst_node, stream); else { STARPU_ASSERT(copy_methods->any_to_any); ret = copy_methods->any_to_any(src_interface, src_node, dst_interface, dst_node, &req->async_channel); } cures = cudaEventRecord(req->async_channel.event.cuda_event, stream); if (STARPU_UNLIKELY(cures != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(cures); } return ret; } int _starpu_cuda_copy_data_from_cuda_to_cpu(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t size, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CPU_RAM); return starpu_cuda_copy_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, size, async_channel?starpu_cuda_get_out_transfer_stream(src_node):NULL, cudaMemcpyDeviceToHost); } int _starpu_cuda_copy_data_from_cuda_to_cuda(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t size, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CUDA_RAM); return starpu_cuda_copy_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, size, async_channel?starpu_cuda_get_peer_transfer_stream(src_node, dst_node):NULL, cudaMemcpyDeviceToDevice); } int _starpu_cuda_copy_data_from_cpu_to_cuda(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t size, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CPU_RAM && dst_kind == STARPU_CUDA_RAM); return starpu_cuda_copy_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, size, async_channel?starpu_cuda_get_in_transfer_stream(dst_node):NULL, cudaMemcpyHostToDevice); } int _starpu_cuda_copy2d_data_from_cuda_to_cpu(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CPU_RAM); return starpu_cuda_copy2d_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, blocksize, numblocks, ld_src, ld_dst, async_channel?starpu_cuda_get_out_transfer_stream(src_node):NULL, cudaMemcpyDeviceToHost); } int _starpu_cuda_copy2d_data_from_cuda_to_cuda(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CUDA_RAM && dst_kind == STARPU_CUDA_RAM); return starpu_cuda_copy2d_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, blocksize, numblocks, ld_src, ld_dst, async_channel?starpu_cuda_get_peer_transfer_stream(src_node, dst_node):NULL, cudaMemcpyDeviceToDevice); } int _starpu_cuda_copy2d_data_from_cpu_to_cuda(uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, struct _starpu_async_channel *async_channel) { int src_kind = starpu_node_get_kind(src_node); int dst_kind = starpu_node_get_kind(dst_node); STARPU_ASSERT(src_kind == STARPU_CPU_RAM && dst_kind == STARPU_CUDA_RAM); return starpu_cuda_copy2d_async_sync((void*) (src + src_offset), src_node, (void*) (dst + dst_offset), dst_node, blocksize, numblocks, ld_src, ld_dst, async_channel?starpu_cuda_get_in_transfer_stream(dst_node):NULL, cudaMemcpyHostToDevice); } #endif /* STARPU_USE_CUDA */ int _starpu_cuda_is_direct_access_supported(unsigned node, unsigned handling_node) { /* GPUs not always allow direct remote access: if CUDA4 * is enabled, we allow two CUDA devices to communicate. */ #ifdef STARPU_SIMGRID (void) node; if (starpu_node_get_kind(handling_node) == STARPU_CUDA_RAM) { starpu_sg_host_t host = _starpu_simgrid_get_memnode_host(handling_node); # ifdef STARPU_HAVE_SIMGRID_ACTOR_H const char* cuda_memcpy_peer = sg_host_get_property_value(host, "memcpy_peer"); # else const char* cuda_memcpy_peer = MSG_host_get_property_value(host, "memcpy_peer"); # endif return cuda_memcpy_peer && atoll(cuda_memcpy_peer); } else return 0; #elif defined(STARPU_HAVE_CUDA_MEMCPY_PEER) (void) node; enum starpu_node_kind kind = starpu_node_get_kind(handling_node); return kind == STARPU_CUDA_RAM; #else /* STARPU_HAVE_CUDA_MEMCPY_PEER */ /* Direct GPU-GPU transfers are not allowed in general */ (void) node; (void) handling_node; return 0; #endif /* STARPU_HAVE_CUDA_MEMCPY_PEER */ } uintptr_t _starpu_cuda_malloc_on_node(unsigned dst_node, size_t size, int flags) { uintptr_t addr = 0; (void) flags; #if defined(STARPU_USE_CUDA) || defined(STARPU_SIMGRID) #ifdef STARPU_SIMGRID static uintptr_t last[STARPU_MAXNODES]; #ifdef STARPU_DEVEL #warning TODO: record used memory, using a simgrid property to know the available memory #endif /* Sleep for the allocation */ STARPU_PTHREAD_MUTEX_LOCK(&cuda_alloc_mutex); if (_starpu_simgrid_cuda_malloc_cost()) starpu_sleep(0.000175); if (!last[dst_node]) last[dst_node] = 1<<10; addr = last[dst_node]; last[dst_node]+=size; STARPU_ASSERT(last[dst_node] >= addr); STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_alloc_mutex); #else unsigned devid = starpu_memory_node_get_devid(dst_node); #if defined(STARPU_HAVE_CUDA_MEMCPY_PEER) starpu_cuda_set_device(devid); #else struct _starpu_worker *worker = _starpu_get_local_worker_key(); if (!worker || worker->arch != STARPU_CUDA_WORKER || worker->devid != devid) STARPU_ASSERT_MSG(0, "CUDA peer access is not available with this version of CUDA"); #endif /* Check if there is free memory */ size_t cuda_mem_free, cuda_mem_total; cudaError_t status; status = cudaMemGetInfo(&cuda_mem_free, &cuda_mem_total); if (status == cudaSuccess && cuda_mem_free < (size*2)) { addr = 0; } else { status = cudaMalloc((void **)&addr, size); if (!addr || (status != cudaSuccess)) { if (STARPU_UNLIKELY(status != cudaErrorMemoryAllocation)) STARPU_CUDA_REPORT_ERROR(status); addr = 0; } } #endif #endif return addr; } void _starpu_cuda_free_on_node(unsigned dst_node, uintptr_t addr, size_t size, int flags) { (void) dst_node; (void) addr; (void) size; (void) flags; #if defined(STARPU_USE_CUDA) || defined(STARPU_SIMGRID) #ifdef STARPU_SIMGRID STARPU_PTHREAD_MUTEX_LOCK(&cuda_alloc_mutex); /* Sleep for the free */ if (_starpu_simgrid_cuda_malloc_cost()) starpu_sleep(0.000750); STARPU_PTHREAD_MUTEX_UNLOCK(&cuda_alloc_mutex); /* CUDA also synchronizes roughly everything on cudaFree */ _starpu_simgrid_sync_gpus(); #else cudaError_t err; unsigned devid = starpu_memory_node_get_devid(dst_node); #if defined(STARPU_HAVE_CUDA_MEMCPY_PEER) starpu_cuda_set_device(devid); #else struct _starpu_worker *worker = _starpu_get_local_worker_key(); if (!worker || worker->arch != STARPU_CUDA_WORKER || worker->devid != devid) STARPU_ASSERT_MSG(0, "CUDA peer access is not available with this version of CUDA"); #endif /* STARPU_HAVE_CUDA_MEMCPY_PEER */ err = cudaFree((void*)addr); #ifdef STARPU_OPENMP /* When StarPU is used as Open Runtime support, * starpu_omp_shutdown() will usually be called from a * destructor, in which case cudaThreadExit() reports a * cudaErrorCudartUnloading here. There should not * be any remaining tasks running at this point so * we can probably ignore it without much consequences. */ if (STARPU_UNLIKELY(err != cudaSuccess && err != cudaErrorCudartUnloading)) STARPU_CUDA_REPORT_ERROR(err); #else if (STARPU_UNLIKELY(err != cudaSuccess)) STARPU_CUDA_REPORT_ERROR(err); #endif /* STARPU_OPENMP */ #endif /* STARPU_SIMGRID */ #endif } struct _starpu_driver_ops _starpu_driver_cuda_ops = { .init = _starpu_cuda_driver_init_from_worker, .run = _starpu_cuda_run_from_worker, .run_once = _starpu_cuda_driver_run_once_from_worker, .deinit = _starpu_cuda_driver_deinit_from_worker }; #ifdef STARPU_SIMGRID struct _starpu_node_ops _starpu_driver_cuda_node_ops = { .copy_interface_to[STARPU_CPU_RAM] = NULL, .copy_interface_to[STARPU_CUDA_RAM] = NULL, .copy_data_to[STARPU_CPU_RAM] = NULL, .copy_data_to[STARPU_CUDA_RAM] = NULL, .copy2d_data_to[STARPU_CPU_RAM] = NULL, .copy2d_data_to[STARPU_CUDA_RAM] = NULL, .copy3d_data_to[STARPU_CPU_RAM] = NULL, .copy3d_data_to[STARPU_CUDA_RAM] = NULL, .wait_request_completion = NULL, .test_request_completion = NULL, .is_direct_access_supported = _starpu_cuda_is_direct_access_supported, .malloc_on_node = _starpu_cuda_malloc_on_node, .free_on_node = _starpu_cuda_free_on_node, .name = "cuda driver" }; #else struct _starpu_node_ops _starpu_driver_cuda_node_ops = { .copy_interface_to[STARPU_CPU_RAM] = _starpu_cuda_copy_interface_from_cuda_to_cpu, .copy_interface_to[STARPU_CUDA_RAM] = _starpu_cuda_copy_interface_from_cuda_to_cuda, .copy_data_to[STARPU_CPU_RAM] = _starpu_cuda_copy_data_from_cuda_to_cpu, .copy_data_to[STARPU_CUDA_RAM] = _starpu_cuda_copy_data_from_cuda_to_cuda, .copy2d_data_to[STARPU_CPU_RAM] = _starpu_cuda_copy2d_data_from_cuda_to_cpu, .copy2d_data_to[STARPU_CUDA_RAM] = _starpu_cuda_copy2d_data_from_cuda_to_cuda, #if 0 .copy3d_data_to[STARPU_CPU_RAM] = _starpu_cuda_copy3d_data_from_cuda_to_cpu, .copy3d_data_to[STARPU_CUDA_RAM] = _starpu_cuda_copy3d_data_from_cuda_to_cuda, #else .copy3d_data_to[STARPU_CPU_RAM] = NULL, .copy3d_data_to[STARPU_CUDA_RAM] = NULL, #endif .wait_request_completion = _starpu_cuda_wait_request_completion, .test_request_completion = _starpu_cuda_test_request_completion, .is_direct_access_supported = _starpu_cuda_is_direct_access_supported, .malloc_on_node = _starpu_cuda_malloc_on_node, .free_on_node = _starpu_cuda_free_on_node, .name = "cuda driver" }; #endif