################## # Performance Model Version 44 #################### # COMBs # number of combinations 5 #################### # COMB_4 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb4) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 7372800 0.000000e+00 1.583302e+04 2.624137e+03 3.974089e+06 6.465024e+10 251 2c1922b7 819200 0.000000e+00 3.523655e+03 5.077738e+02 5.990214e+04 2.154576e+08 17 d39bff17 3276800 0.000000e+00 8.986208e+03 1.629610e+03 1.797242e+05 1.668151e+09 20 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb3) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 7372800 0.000000e+00 1.570696e+03 2.281691e+02 4.115224e+05 6.600167e+08 262 2c1922b7 819200 0.000000e+00 2.882912e+02 5.271451e+01 7.409085e+04 2.207390e+07 257 d39bff17 3276800 0.000000e+00 8.365056e+02 1.344660e+02 1.396964e+05 1.198764e+08 167 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb2) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 7372800 0.000000e+00 1.571709e+03 2.150516e+02 4.007858e+05 6.417117e+08 255 2c1922b7 819200 0.000000e+00 9.967334e+01 2.197557e+01 2.372225e+04 2.479413e+06 238 d39bff17 3276800 0.000000e+00 7.019049e+02 1.632697e+02 1.109010e+05 8.205375e+07 158 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 3 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda3_impl0 (Comb0) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 7372800 0.000000e+00 1.569547e+03 2.419662e+02 2.589752e+05 4.161341e+08 165 2c1922b7 819200 0.000000e+00 2.858293e+02 5.241353e+01 7.460146e+04 2.204030e+07 261 d39bff17 3276800 0.000000e+00 8.352707e+02 1.515223e+02 1.587014e+05 1.369209e+08 190 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb1) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n ff82dda0 7372800 0.000000e+00 1.591448e+03 2.256700e+02 2.387172e+05 3.875451e+08 150 2c1922b7 819200 0.000000e+00 2.930233e+02 5.590601e+01 5.362326e+04 1.628483e+07 183 d39bff17 3276800 0.000000e+00 8.453596e+02 1.395049e+02 1.420204e+05 1.233279e+08 168