include("../../src/Compiler/include.jl") starpu_new_cpu_kernel_file("../build/generated_cpu_black_scholes.c") starpu_new_cuda_kernel_file("../build/generated_cuda_black_scholes.cu") @cpu_cuda_kernel function black_scholes(data ::Matrix{Float64}, res ::Matrix{Float64}) ::Void widthn ::Int64 = width(data) # data[1,...] -> S # data[2,...] -> K # data[3,...] -> r # data[4,...] -> T # data[4,...] -> sig p ::Float64 = 0.2316419 b1 ::Float64 = 0.31938153 b2 ::Float64 = -0.356563782 b3 ::Float64 = 1.781477937 b4 ::Float64 = -1.821255978 b5 ::Float64 = 1.330274428 @indep for i = 1:widthn d1 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] + pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i])) d2 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] - pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i])) f ::Float64 = 0 ff ::Float64 = 0 s1 ::Float64 = 0 s2 ::Float64 = 0 s3 ::Float64 = 0 s4 ::Float64 = 0 s5 ::Float64 = 0 sz ::Float64 = 0 ######## Compute normcdf of d1 normd1p ::Float64 = 0 normd1n ::Float64 = 0 boold1 ::Int64 = (d1 >= 0) + (d1 <= 0) if (boold1 >= 2) normd1p = 0.5 normd1n = 0.5 else tmp1 ::Float64 = abs(d1) f = 1 / sqrt(2 * M_PI) ff = exp(-pow(tmp1, 2.0) / 2) * f s1 = b1 / (1 + p * tmp1) s2 = b2 / pow((1 + p * tmp1), 2.0) s3 = b3 / pow((1 + p * tmp1), 3.0) s4 = b4 / pow((1 + p * tmp1), 4.0) s5 = b5 / pow((1 + p * tmp1), 5.0) sz = ff * (s1 + s2 + s3 + s4 + s5) if (d1 > 0) normd1p = 1 - sz # normcdf(d1) normd1n = sz # normcdf(-d1) else normd1p = sz normd1n = 1 - sz end end ######## ######## Compute normcdf of d2 normd2p ::Float64 = 0 normd2n ::Float64 = 0 boold2 ::Int64 = (d2 >= 0) + (d2 <= 0) if (boold2 >= 2) normd2p = 0.5 normd2n = 0.5 else tmp2 ::Float64 = abs(d2) f = 1 / sqrt(2 * M_PI) ff = exp(-pow(tmp2, 2.0) / 2) * f s1 = b1 / (1 + p * tmp2) s2 = b2 / pow((1 + p * tmp2), 2.0) s3 = b3 / pow((1 + p * tmp2), 3.0) s4 = b4 / pow((1 + p * tmp2), 4.0) s5 = b5 / pow((1 + p * tmp2), 5.0) sz = ff * (s1 + s2 + s3 + s4 + s5) if (d2 > 0) normd2p = 1 - sz # normcdf(d2) normd2n = sz # normcdf(-d2) else normd2p = sz normd2n = 1 - sz end end # normd1p = (1 + erf(d1/sqrt(2.0)))/2.0 # normd1n = (1 + erf(-d1/sqrt(2.0)))/2.0 # normd2p = (1 + erf(d2/sqrt(2.0)))/2.0 # normd2n = (1 + erf(-d2/sqrt(2.0)))/2.0 res[1,i] = data[1,i] * (normd1p) - data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2p) # S * N(d1) - r*exp(-r*T) * norm(d2) res[2,i] = -data[1,i] * (normd1n) + data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2n) # -S * N(-d1) + r*exp(-r*T) * norm(-d2) end end compile_cpu_kernels("../build/generated_cpu_black_scholes.so") compile_cuda_kernels("../build/generated_cuda_black_scholes.so") combine_kernel_files("../build/generated_tasks_black_scholes.so", ["../build/generated_cpu_black_scholes.so", "../build/generated_cuda_black_scholes.so"])