using LinearAlgebra function mandelbrot(pixels, centerr ::Float64, centeri ::Float64, offset ::Int64, dim ::Int64) :: Nothing height :: Int64, width :: Int64 = size(pixels) zoom :: Float64 = width * 0.25296875 iz :: Float64 = 1. / zoom diverge :: Float32 = 4.0 max_iterations :: Float32 = ((width/2) * 0.049715909 * log10(zoom)); imi :: Float64 = 1. / max_iterations cr :: Float64 = 0. zr :: Float64 = 0. ci :: Float64 = 0. zi :: Float64 = 0. n :: Int64 = 0 tmp :: Float64 = 0. for y = 1:height for x = 1:width cr = centerr + (x-1 - (dim / 2)) * iz zr = cr ci = centeri + (y-1+offset - (dim / 2)) * iz zi = ci n = 0 for i = 0:max_iterations n = i if (zr*zr + zi*zi > diverge) break end tmp = zr*zr - zi*zi + cr zi = 2*zr*zi + ci zr = tmp end if (n < max_iterations) pixels[y,x] = round(15 * n * imi) else pixels[y,x] = 0 end end end return end function mandelbrot_without_starpu(A ::Matrix{Int64}, cr ::Float64, ci ::Float64, dim ::Int64, nslicesx ::Int64) width,height = size(A) step = height / nslicesx for taskx in (1 : nslicesx) start_id = floor(Int64, (taskx-1)*step+1) end_id = floor(Int64, (taskx-1)*step+step) a = view(A, start_id:end_id, :) offset ::Int64 = (taskx-1)*dim/nslicesx mandelbrot(a, cr, ci, offset, dim) end end function pixels2img(pixels ::Matrix{Int64}, width ::Int64, height ::Int64, filename ::String) MAPPING = [[66,30,15],[25,7,26],[9,1,47],[4,4,73],[0,7,100],[12,44,138],[24,82,177],[57,125,209],[134,181,229],[211,236,248],[241,233,191],[248,201,95],[255,170,0],[204,128,0],[153,87,0],[106,52,3]] open(filename, "w") do f write(f, "P3\n$width $height\n255\n") for i = 1:height for j = 1:width write(f,"$(MAPPING[1+pixels[i,j]][1]) $(MAPPING[1+pixels[i,j]][2]) $(MAPPING[1+pixels[i,j]][3]) ") end write(f, "\n") end end end function min_times(cr ::Float64, ci ::Float64, dim ::Int64, nslices ::Int64) tmin=0; pixels ::Matrix{Int64} = zeros(dim, dim) for i = 1:10 t = time_ns(); mandelbrot_without_starpu(pixels, cr, ci, dim, nslices) t = time_ns()-t if (tmin==0 || tmin>t) tmin=t end end pixels2img(pixels,dim,dim,"out$(dim).ppm") return tmin end function display_time(cr ::Float64, ci ::Float64, start_dim ::Int64, step_dim ::Int64, stop_dim ::Int64, nslices ::Int64) for dim in (start_dim : step_dim : stop_dim) res = min_times(cr, ci, dim, nslices) res=res/dim/dim; # time per pixel println("$(dim) $(res)") end end display_time(-0.800671,-0.158392,32,32,4096,4)