# StarPU --- Runtime system for heterogeneous multicore architectures. # # Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria # # StarPU is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2.1 of the License, or (at # your option) any later version. # # StarPU is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU Lesser General Public License in COPYING.LGPL for more details. # using StarPU @target STARPU_CPU+STARPU_CUDA @codelet function gemm(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, alpha :: Float32, beta :: Float32) :: Nothing M :: Int32 = height(A) N :: Int32 = width(B) K :: Int32 = width(A) lda :: Int32 = height(A) ldb :: Int32 = height(B) ldc :: Int32 = height(C) STARPU_SGEMM("N", "N", M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) return end function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, alpha :: Float32, beta :: Float32, nslicesx, nslicesy) scale= 3 tmin=0 vert = starpu_data_filter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx) horiz = starpu_data_filter(STARPU_MATRIX_FILTER_BLOCK, nslicesy) @starpu_block let hA,hB,hC = starpu_data_register(A, B, C) starpu_data_partition(hB, vert) starpu_data_partition(hA, horiz) starpu_data_map_filters(hC, vert, horiz) tmin=0 perfmodel = starpu_perfmodel( perf_type = starpu_perfmodel_type(STARPU_HISTORY_BASED), symbol = "history_perf" ) cl = starpu_codelet( cpu_func = "gemm", cuda_func = "gemm", modes = [STARPU_R, STARPU_R, STARPU_RW], perfmodel = perfmodel ) for i in (1 : 10 ) t=time_ns() @starpu_sync_tasks begin for taskx in (1 : nslicesx) for tasky in (1 : nslicesy) handles = [hA[tasky], hB[taskx], hC[taskx, tasky]] task = starpu_task(cl = cl, handles = handles, cl_arg=(alpha, beta)) starpu_task_submit(task) #@starpu_async_cl matrix_mult(hA[tasky], hB[taskx], hC[taskx, tasky]) end end end t=time_ns()-t if (tmin==0 || tmin>t) tmin=t end end end return tmin end function approximately_equals( A :: Matrix{Cfloat}, B :: Matrix{Cfloat}, eps = 1e-2 ) (height, width) = size(A) for j in (1 : width) for i in (1 : height) if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j]))) println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])") return false end end end return true end function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy) for dim in (start_dim : step_dim : stop_dim) A = Array(rand(Cfloat, dim, dim)) B = Array(rand(Cfloat, dim, dim)) C = zeros(Float32, dim, dim) starpu_memory_pin(A) starpu_memory_pin(B) starpu_memory_pin(C) alpha = 4.0f0 beta = 2.0f0 mt = multiply_with_starpu(A, B, C, alpha, beta, nslicesx, nslicesy) gflop = 2 * dim * dim * dim * 1.e-9 gflops = gflop / (mt * 1.e-9) size=dim*dim*dim*4*3/1024/1024 println(io,"$dim $gflops") println("$dim $gflops") starpu_memory_unpin(A) starpu_memory_unpin(B) starpu_memory_unpin(C) end end if size(ARGS, 1) < 1 filename="x.dat" else filename=ARGS[1] end starpu_init() io=open(filename,"w") compute_times(io,64,512,4096,2,2) close(io) starpu_shutdown()