################## # Performance Model Version 44 #################### # COMBs # number of combinations 4 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb0) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n f2ff9ae5 34480152 0.000000e+00 4.346555e+01 9.370422e+00 2.103733e+04 9.568966e+05 484 fb4b8624 4427800 0.000000e+00 1.080055e+01 2.408554e+00 6.631537e+03 7.518614e+04 614 4af260f6 14678040 0.000000e+00 2.045608e+01 4.186697e+00 1.294870e+04 2.759751e+05 633 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb2) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n f2ff9ae5 34480152 0.000000e+00 3.184284e+01 5.707419e+00 4.840111e+03 1.590742e+05 152 fb4b8624 4427800 0.000000e+00 3.194475e+01 5.964283e+00 1.150011e+03 3.801743e+04 36 4af260f6 14678040 0.000000e+00 3.430576e+01 6.297323e+00 5.523228e+03 1.958632e+05 161 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb3) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n f2ff9ae5 34480152 0.000000e+00 2.735681e+01 5.823931e+00 3.063963e+03 8.761910e+04 112 fb4b8624 4427800 0.000000e+00 3.161427e+01 5.733859e+00 2.212999e+03 7.226375e+04 70 4af260f6 14678040 0.000000e+00 3.666193e+01 6.692591e+00 6.819119e+03 2.583331e+05 186 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb1) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n f2ff9ae5 34480152 0.000000e+00 3.900993e+01 8.465923e+00 7.489907e+03 3.059418e+05 192 fb4b8624 4427800 0.000000e+00 3.364966e+01 7.354940e+00 1.278687e+03 4.508300e+04 38 4af260f6 14678040 0.000000e+00 2.853135e+01 5.469952e+00 8.730594e+03 2.582513e+05 306