################## # Performance Model Version 44 #################### # COMBs # number of combinations 5 #################### # COMB_0 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 0 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cpu0_impl0 (Comb0) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n 4af260f6 14678040 0.000000e+00 3.447447e+01 7.398265e+00 3.237153e+04 1.167387e+06 939 fb4b8624 4427800 0.000000e+00 5.439097e+01 1.253425e+01 3.094846e+05 1.772711e+07 5690 f2ff9ae5 34480152 0.000000e+00 5.041329e+01 1.085485e+01 6.226042e+04 3.284270e+06 1235 #################### # COMB_1 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 3 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda3_impl0 (Comb1) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n 4af260f6 14678040 0.000000e+00 3.176283e+01 6.812714e+00 1.673901e+04 5.561382e+05 527 fb4b8624 4427800 0.000000e+00 5.311651e+01 1.346481e+01 1.290731e+04 7.296474e+05 243 f2ff9ae5 34480152 0.000000e+00 4.192896e+01 9.759572e+00 3.207566e+04 1.417765e+06 765 #################### # COMB_2 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 2 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda2_impl0 (Comb2) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n 4af260f6 14678040 0.000000e+00 3.786531e+01 9.328071e+00 1.991715e+04 7.999380e+05 526 fb4b8624 4427800 0.000000e+00 5.555598e+01 1.303330e+01 9.444517e+03 5.535768e+05 170 f2ff9ae5 34480152 0.000000e+00 4.359390e+01 1.022197e+01 2.218929e+04 1.020503e+06 509 #################### # COMB_3 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 1 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda1_impl0 (Comb3) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n 4af260f6 14678040 0.000000e+00 4.035980e+01 9.947105e+00 1.989738e+04 8.518341e+05 493 fb4b8624 4427800 0.000000e+00 8.863692e+01 1.909792e+01 1.161144e+04 1.076982e+06 131 f2ff9ae5 34480152 0.000000e+00 3.838146e+01 9.359960e+00 2.890124e+04 1.175241e+06 753 #################### # COMB_4 # number of types devices 1 #################### # DEV_0 # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4) 1 #################### # DEV_0 # device id 0 #################### # DEV_0 # number of cores 1 ########## # number of implementations 1 ##### # Model for cuda0_impl0 (Comb4) # number of entries 3 # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0 # a b c nan nan nan # hash size flops mean (us) dev (us) sum sum2 n 4af260f6 14678040 0.000000e+00 3.505264e+01 8.845541e+00 1.945422e+04 7.253469e+05 555 fb4b8624 4427800 0.000000e+00 4.717545e+01 1.027132e+01 6.227160e+03 3.076951e+05 132 f2ff9ae5 34480152 0.000000e+00 3.110432e+01 6.170515e+00 2.370149e+04 7.662320e+05 762