/* * StarPU * Copyright (C) INRIA 2008-2009 (see AUTHORS file) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ #include "dw_mult.h" static pthread_mutex_t mutex; static pthread_cond_t cond; float *A[MAXSLICESY][MAXSLICESZ]; float *B[MAXSLICESZ][MAXSLICESX]; float *C[MAXSLICESY][MAXSLICESX]; starpu_data_handle A_state[MAXSLICESY][MAXSLICESZ]; starpu_data_handle B_state[MAXSLICESZ][MAXSLICESX]; starpu_data_handle C_state[MAXSLICESY][MAXSLICESX]; /* fortran ordering ... */ #define FULLA(i,j) \ (A[(i)/BLOCKSIZEY][(j)/BLOCKSIZEZ][(i)%BLOCKSIZEY + ((j)%BLOCKSIZEZ)*BLOCKSIZEY]) #define FULLB(i,j) \ (B[(i)/BLOCKSIZEZ][(j)/BLOCKSIZEX][(i)%BLOCKSIZEZ + ((j)%BLOCKSIZEX)*BLOCKSIZEZ]) #define FULLC(i,j) \ (C[(i)/BLOCKSIZEY][(j)/BLOCKSIZEX][(i)%BLOCKSIZEY + ((j)%BLOCKSIZEX)*BLOCKSIZEY]) #define TAG(x,y,z,iter) \ ((starpu_tag_t)((z) + (iter)*nslicesz + (x)*(nslicesz*niter) + (y)*(nslicesx*nslicesz*niter))) static void submit_new_iter(unsigned x, unsigned y, unsigned iter); /* * That program should compute C = A * B * * A of size (z,y) * B of size (x,z) * C of size (x,y) |---------------| z | B | |---------------| z x |----| |---------------| | | | | | | | | | A | y | C | | | | | | | | | |----| |---------------| */ static void terminate(void) { gettimeofday(&end, NULL); double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec)); uint64_t total_flop = BLAS3_FLOP(ydim, xdim, zdim)*niter; fprintf(stderr, "Computation took (ms):\n"); printf("%2.2f\n", timing/1000); fprintf(stderr, " GFlop : total (%2.2f) cublas (%2.2f) atlas (%2.2f)\n", (double)total_flop/1000000000.0f, (double)flop_cublas/1000000000.0f, (double)flop_atlas/1000000000.0f); fprintf(stderr, " GFlop/s : %2.2f\n", (double)total_flop / (double)timing/1000); pthread_mutex_lock(&mutex); pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex); } #define COMMON_CODE \ uint32_t nxC, nyC, nyA; \ uint32_t ldA, ldB, ldC; \ \ float *subA; \ float *subB; \ float *subC; \ \ subA = (float *)descr[0].blas.ptr; \ subB = (float *)descr[1].blas.ptr; \ subC = (float *)descr[2].blas.ptr; \ \ nxC = descr[2].blas.nx; \ nyC = descr[2].blas.ny; \ nyA = descr[0].blas.ny; \ \ ldA = descr[0].blas.ld; \ ldB = descr[1].blas.ld; \ ldC = descr[2].blas.ld; #ifdef USE_CUDA static void cublas_mult(starpu_data_interface_t *descr, __attribute__((unused)) void *arg) { COMMON_CODE cublasSgemm('n', 'n', nxC, nyC, nyA, 1.0f, subA, ldA, subB, ldB, 1.0f, subC, ldC); cublasStatus st; st = cublasGetError(); if (st != CUBLAS_STATUS_SUCCESS) STARPU_ASSERT(0); uint64_t flopcnt = BLAS3_FLOP(nyC, nxC, nyA); flop_cublas += flopcnt; ls_cublas += BLAS3_LS(nyC, nxC, nyA); } #endif static void core_mult(starpu_data_interface_t *descr, __attribute__((unused)) void *arg) { COMMON_CODE // fprintf(stderr, "Call SGEMM : nxC %d nyC %d nyA %d subA %p ldA %d subB %p ldB %d subC %p ldC %d\n", // nxC, nyC, nyA, subA, ldA, subB, ldB, subC, ldC); SGEMM("N", "N", nxC, nyC, nyA, 1.0f, subA, ldA, subB, ldB, 1.0f, subC, ldC); flop_atlas += BLAS3_FLOP(nxC, nyC, nyA); ls_atlas += BLAS3_LS(nxC, nyC, nyA); } #define MEM_ALIGNMENT 16 static void init_problem_data(void) { unsigned i,j; /* debug ... */ memset(A, 0, MAXSLICESY*MAXSLICESZ*sizeof(float *)); memset(B, 0, MAXSLICESZ*MAXSLICESZ*sizeof(float *)); memset(C, 0, MAXSLICESY*MAXSLICESX*sizeof(float *)); memset(&A_state, 0, MAXSLICESY*MAXSLICESZ*sizeof(starpu_data_handle)); memset(&B_state, 0, MAXSLICESZ*MAXSLICESZ*sizeof(starpu_data_handle)); memset(&C_state, 0, MAXSLICESY*MAXSLICESX*sizeof(starpu_data_handle)); /* Allocate grids of buffer */ /* TODO pin ... */ unsigned z, y, x; for (y = 0; y < nslicesy; y++) { for (z = 0; z < nslicesz; z++) { #ifdef HAVE_POSIX_MEMALIGN posix_memalign((void **)&A[y][z], MEM_ALIGNMENT, BLOCKSIZEZ*BLOCKSIZEY*sizeof(float)); #else A[y][z] = malloc(BLOCKSIZEZ*BLOCKSIZEY*sizeof(float)); #endif assert(A[y][z]); } } for (z = 0; z < nslicesz; z++) { for (x = 0; x < nslicesx; x++) { #ifdef HAVE_POSIX_MEMALIGN posix_memalign((void **)&B[z][x], MEM_ALIGNMENT, BLOCKSIZEX*BLOCKSIZEZ*sizeof(float)); #else B[z][x] = malloc(BLOCKSIZEX*BLOCKSIZEZ*sizeof(float)); #endif assert(B[z][x]); } } for (y = 0; y < nslicesy; y++) { for (x = 0; x < nslicesx; x++) { #ifdef HAVE_POSIX_MEMALIGN posix_memalign((void **)&C[y][x], MEM_ALIGNMENT, BLOCKSIZEX*BLOCKSIZEY*sizeof(float)); #else C[y][x] = malloc(BLOCKSIZEX*BLOCKSIZEY*sizeof(float)); #endif assert(C[y][x]); } } /* fill the A and B matrices */ unsigned blockx, blocky, blockz; if (norandom) { for (blocky = 0; blocky < nslicesy; blocky++) for (blockz = 0; blockz < nslicesz; blockz++) for (j = 0; j < BLOCKSIZEY; j++) for (i = 0; i < BLOCKSIZEZ; i++) { A[blocky][blockz][i*BLOCKSIZEY + j] = (float)(1 + blockz + blocky*nslicesz); } for (blockz = 0; blockz < nslicesz; blockz++) for (blockx = 0; blockx < nslicesx; blockx++) for (j = 0; j < BLOCKSIZEZ; j++) for (i = 0; i < BLOCKSIZEX; i++) { B[blockz][blockx][i*BLOCKSIZEZ + j] = (float)(1 + blockx + blockz*nslicesx); } } else { for (blocky = 0; blocky < nslicesy; blocky++) for (blockz = 0; blockz < nslicesz; blockz++) for (j = 0; j < BLOCKSIZEY; j++) for (i = 0; i < BLOCKSIZEZ; i++) { A[blocky][blockz][i*BLOCKSIZEY + j] = (float)(drand48()); } for (blockz = 0; blockz < nslicesz; blockz++) for (blockx = 0; blockx < nslicesx; blockx++) for (j = 0; j < BLOCKSIZEZ; j++) for (i = 0; i < BLOCKSIZEX; i++) { B[blockz][blockx][i*BLOCKSIZEZ + j] = (float)(drand48()); } } for (blocky = 0; blocky < nslicesy; blocky++) for (blockx = 0; blockx < nslicesx; blockx++) for (j = 0; j < BLOCKSIZEY; j++) for (i = 0; i < BLOCKSIZEX; i++) { C[blocky][blockx][i*BLOCKSIZEY + j] = (float)(blockx + blocky*nslicesx + 1); } /* declare the StarPU data to monitor */ for (y = 0; y < nslicesy; y++) { for (z = 0; z < nslicesz; z++) { starpu_monitor_blas_data(&A_state[y][z], 0, (uintptr_t)A[y][z], BLOCKSIZEY, BLOCKSIZEY, BLOCKSIZEZ, sizeof(float)); } } for (z = 0; z < nslicesz; z++) { for (x = 0; x < nslicesx; x++) { starpu_monitor_blas_data(&B_state[z][x], 0, (uintptr_t)B[z][x], BLOCKSIZEZ, BLOCKSIZEZ, BLOCKSIZEX, sizeof(float)); } } for (y = 0; y < nslicesy; y++) { for (x = 0; x < nslicesx; x++) { starpu_monitor_blas_data(&C_state[y][x], 0, (uintptr_t)C[y][x], BLOCKSIZEY, BLOCKSIZEY, BLOCKSIZEX, sizeof(float)); } } conf.k = BLOCKSIZEZ; conf.m = BLOCKSIZEY; conf.n = BLOCKSIZEX; display_memory_consumption(); } static void cleanup_problem(void) { unsigned z, y, x; for (y = 0; y < nslicesy; y++) { for (z = 0; z < nslicesz; z++) { // free(A[y][z]); } } for (z = 0; z < nslicesz; z++) { for (x = 0; x < nslicesx; x++) { // free(B[z][x]); } } for (y = 0; y < nslicesy; y++) { for (x = 0; x < nslicesx; x++) { // free(C[y][x]); starpu_tag_remove(TAG(nslicesz - 1, y, x, niter - 1)); } } } int xycounter; struct cb2_s { unsigned blockx; unsigned blocky; unsigned iter; int *xycounter; }; static starpu_codelet cl = { .core_func = core_mult, #ifdef USE_CUDA .cublas_func = cublas_mult, #endif #ifdef USE_GORDON #ifdef SPU_FUNC_SGEMM .gordon_func = SPU_FUNC_SGEMM, #else #warning SPU_FUNC_SGEMM is not available #endif #endif .where = CORE|CUBLAS|GORDON, .nbuffers = 3 }; static struct starpu_task *construct_task(unsigned x, unsigned y, unsigned z, unsigned iter) { struct starpu_task *task = starpu_task_create(); task->cl = &cl; task->cl_arg = &conf; task->cl_arg_size = sizeof(struct block_conf); task->use_tag = 1; task->tag_id = TAG(z, y, x, iter); task->buffers[0].state = A_state[y][z]; task->buffers[0].mode = R; task->buffers[1].state = B_state[z][x]; task->buffers[1].mode = R; task->buffers[2].state = C_state[y][x]; task->buffers[2].mode = RW; return task; } static void callback_func(void *arg) { /* the argument is a pointer to a counter of the remaining tasks */ int *counter = arg; int newvalue = STARPU_ATOMIC_ADD(counter, -1); if (newvalue == 0) { /* we are done */ fprintf(stderr, "done ...\n"); terminate(); } return; } static void callback_func_2(void *arg) { /* the argument is a pointer to a counter of the remaining tasks */ struct cb2_s *cb2 = arg; unsigned x,y,z,iter; iter = cb2->iter; x = cb2->blockx; y = cb2->blocky; free(cb2); // fprintf(stderr, "func 2 for x %d y %d iter %d\n", x, y, iter); /* TAG(nslicesz - 1, y, x, iter) remains ... */ for (z = 0; z < nslicesz - 1; z++) { starpu_tag_remove(TAG(z, y, x, iter)); } if (iter > 0) { starpu_tag_remove(TAG(nslicesz - 1, y, x, iter-1)); } if (iter == niter - 1) { callback_func(&xycounter); } else { submit_new_iter(x, y, iter+1); } } static void submit_new_iter(unsigned x, unsigned y, unsigned iter) { unsigned z; for (z = 0; z < nslicesz; z++) { struct starpu_task *task; task = construct_task(x, y, z, iter); if (z != 0) { starpu_tag_declare_deps(TAG(z, y, x, iter), 1, TAG(z-1, y, x, iter)); } if (z == nslicesz - 1) { struct cb2_s *cb2 = malloc(sizeof(struct cb2_s)); cb2->blockx = x; cb2->blocky = y; cb2->iter = iter; cb2->xycounter = &xycounter; task->callback_func = callback_func_2; task->callback_arg = cb2; } starpu_submit_task(task); } } static void launch_codelets(void) { #ifdef USE_FXT fxt_register_thread(0); #endif /* partition the work into slices */ unsigned taskx, tasky; /* only a callback per (nslicesz * niter) task given deps */ xycounter = nslicesx * nslicesy; srand(time(NULL)); gettimeofday(&start, NULL); for (taskx = 0; taskx < nslicesx; taskx++) for (tasky = 0; tasky < nslicesy; tasky++) { submit_new_iter(taskx, tasky, 0); } } int main(__attribute__ ((unused)) int argc, __attribute__ ((unused)) char **argv) { parse_args(argc, argv); /* start the runtime */ starpu_init(NULL); pthread_mutex_init(&mutex, NULL); pthread_cond_init(&cond, NULL); init_problem_data(); launch_codelets(); pthread_mutex_lock(&mutex); pthread_cond_wait(&cond, &mutex); pthread_mutex_unlock(&mutex); cleanup_problem(); exit(-1); starpu_shutdown(); return 0; }