/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010, 2015-2016 Université de Bordeaux * Copyright (C) 2010, 2011, 2012, 2013 CNRS * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ /* * This examples demonstrates how to use multiple linear regression models. The duration of the task test_mlr will be computed using the following equation: T = a + b * (M^2*N) + c * (N^3*K) where M, N, K are the parameters of the task, exponents are coming from cl.model->combinations[..][..] and finally a, b, c are coefficients which mostly depend on the machine speed. These coefficients are going to be automatically computed using least square method. */ #include #include #include #include static long sum; /* Performance function of the task, which is in this case very simple, as the parameter values just need to be written in the array "parameters" */ static void cl_params(struct starpu_task *task, double *parameters) { starpu_codelet_unpack_args(task->cl_arg, ¶meters[0], ¶meters[1], ¶meters[2]); } /* Function of the task that will be executed. In this case running dummy cycles, just to make sure task duration is significant */ void cpu_func(void *buffers[], void *cl_arg) { long i; double m,n,k; starpu_codelet_unpack_args(cl_arg, &m, &n, &k); for(i=0; i < (long) (m*m*n); i++) sum+=i; for(i=0; i < (long) (n*n*n*k); i++) sum+=i; } /* ############################################ */ /* Start of the part specific to multiple linear regression perfmodels */ /* Defining perfmodel, number of parameters and their names */ /* Defining the equation for modeling duration of the task */ /* Refer to the explanation and equation on the top of this file to get more detailed explanation, here we have M^2*N and N^3*K */ static const char * parameters_names[] = { "M", "N", "K", }; static unsigned combi1 [3] = { 2, 1, 0 }; static unsigned combi2 [3] = { 0, 3, 1 }; static unsigned *combinations[] = { combi1, combi2 }; static struct starpu_perfmodel cl_model = { .type = STARPU_MULTIPLE_REGRESSION_BASED, .symbol = "test_mlr", .parameters = cl_params, .nparameters = 3, .parameters_names = parameters_names, .ncombinations = 2, .combinations = combinations, }; static struct starpu_codelet cl = { .cpu_funcs = { cpu_func }, .cpu_funcs_name = { "mlr_codelet" }, .nbuffers = 0, .model = &cl_model, }; /* End of the part specific to multiple linear regression perfmodels */ /* ############################################ */ int main(int argc, char **argv) { /* Initialization */ unsigned i,j; int ret; ret = starpu_init(NULL); if (ret == -ENODEV) return 77; sum=0; double m,n,k; /* Giving pseudo-random values to the M,N,K parameters and inserting tasks */ for(i=0; i < 42; i++) { m = (double) ((rand() % 10)+1); n = (double) ((rand() % 10)+1); k = (double) ((rand() % 10)+1); for(j=0; j < 42; j++) starpu_insert_task(&cl, STARPU_VALUE, &m, sizeof(double), STARPU_VALUE, &n, sizeof(double), STARPU_VALUE, &k, sizeof(double), 0); } starpu_shutdown(); return 0; }