/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010 Université de Bordeaux 1 * Copyright (C) 2010 Centre National de la Recherche Scientifique * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ #include #include #include "cg.h" #define MAXNBLOCKS 128 #define MAXTHREADSPERBLOCK 256 static __global__ void dot_device(TYPE *vx, TYPE *vy, unsigned n, TYPE *dot_array) { __shared__ TYPE scnt[MAXTHREADSPERBLOCK]; /* Do we have a successful shot ? */ const int tid = threadIdx.x + blockIdx.x*blockDim.x; const int nthreads = gridDim.x * blockDim.x; /* Blank the shared mem buffer */ if (threadIdx.x < MAXTHREADSPERBLOCK) scnt[threadIdx.x] = (TYPE)0.0; __syncthreads(); int ind; for (ind = tid; ind < n; ind += nthreads) { TYPE x = vx[ind]; TYPE y = vy[ind]; scnt[threadIdx.x] += (x*y); } __syncthreads(); /* Perform a reduction to compute the sum on each thread within that block */ /* NB: We assume that the number of threads per block is a power of 2 ! */ unsigned s; for (s = blockDim.x/2; s!=0; s>>=1) { if (threadIdx.x < s) scnt[threadIdx.x] += scnt[threadIdx.x + s]; __syncthreads(); } /* report the number of successful shots in the block */ if (threadIdx.x == 0) dot_array[blockIdx.x] = scnt[0]; __syncthreads(); } static __global__ void gather_dot_device(TYPE *dot_array, TYPE *dot) { __shared__ TYPE accumulator[MAXNBLOCKS]; unsigned i; /* Load the values from global mem */ for (i = 0; i < blockDim.x; i++) accumulator[i] = dot_array[i]; __syncthreads(); /* Perform a reduction in shared memory */ unsigned s; for (s = blockDim.x/2; s!=0; s>>=1) { if (threadIdx.x < s) accumulator[threadIdx.x] += accumulator[threadIdx.x + s]; __syncthreads(); } /* Save the result in global memory */ if (threadIdx.x == 0) *dot = *dot + accumulator[0]; } extern "C" void dot_host(TYPE *x, TYPE *y, unsigned nelems, TYPE *dot) { /* How many blocks do we use ? */ unsigned nblocks = 128; // TODO STARPU_ASSERT(nblocks <= MAXNBLOCKS); TYPE *per_block_sum; cudaMalloc((void **)&per_block_sum, nblocks*sizeof(TYPE)); STARPU_ASSERT((nelems % nblocks) == 0); /* How many threads per block ? At most 256, but no more threads than * there are entries to process per block. */ unsigned nthread_per_block = STARPU_MIN(MAXTHREADSPERBLOCK, (nelems / nblocks)); /* each entry of per_block_sum contains the number of successful shots * in the corresponding block. */ dot_device<<>>(x, y, nelems, per_block_sum); /* Note that we do not synchronize between kernel calls because there * is an implicit serialization */ gather_dot_device<<<1, nblocks, 0, starpu_cuda_get_local_stream()>>>(per_block_sum, dot); cudaError_t cures; cures = cudaStreamSynchronize(starpu_cuda_get_local_stream()); if (cures) STARPU_CUDA_REPORT_ERROR(cures); cudaFree(per_block_sum); } static __global__ void zero_vector_device(TYPE *x, unsigned nelems, unsigned nelems_per_thread) { unsigned i; unsigned first_i = blockDim.x * blockIdx.x + threadIdx.x; for (i = first_i; i < nelems; i += nelems_per_thread) x[i] = 0.0; } extern "C" void zero_vector(TYPE *x, unsigned nelems) { unsigned nblocks = STARPU_MIN(128, nelems); unsigned nthread_per_block = STARPU_MIN(MAXTHREADSPERBLOCK, (nelems / nblocks)); unsigned nelems_per_thread = nelems / (nblocks * nthread_per_block); zero_vector_device<<>>(x, nelems, nelems_per_thread); }