/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2009-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ #include "mpi_cholesky.h" #include <common/blas.h> #include <sys/time.h> #include <limits.h> #include <math.h> /* * Create the codelets */ static struct starpu_codelet cl11 = { .cpu_funcs = {chol_cpu_codelet_update_u11}, #ifdef STARPU_USE_CUDA .cuda_funcs = {chol_cublas_codelet_update_u11}, #elif defined(STARPU_SIMGRID) .cuda_funcs = {(void*)1}, #endif .nbuffers = 1, .modes = {STARPU_RW}, .model = &chol_model_11, .color = 0xffff00, }; static struct starpu_codelet cl21 = { .cpu_funcs = {chol_cpu_codelet_update_u21}, #ifdef STARPU_USE_CUDA .cuda_funcs = {chol_cublas_codelet_update_u21}, #elif defined(STARPU_SIMGRID) .cuda_funcs = {(void*)1}, #endif .cuda_flags = {STARPU_CUDA_ASYNC}, .nbuffers = 2, .modes = {STARPU_R, STARPU_RW}, .model = &chol_model_21, .color = 0x8080ff, }; static struct starpu_codelet cl22 = { .cpu_funcs = {chol_cpu_codelet_update_u22}, #ifdef STARPU_USE_CUDA .cuda_funcs = {chol_cublas_codelet_update_u22}, #elif defined(STARPU_SIMGRID) .cuda_funcs = {(void*)1}, #endif .cuda_flags = {STARPU_CUDA_ASYNC}, .nbuffers = 3, .modes = {STARPU_R, STARPU_R, STARPU_RW | STARPU_COMMUTE}, .model = &chol_model_22, .color = 0x00ff00, }; static void run_cholesky(starpu_data_handle_t **data_handles, int rank, int nodes) { unsigned k, m, n; unsigned unbound_prio = STARPU_MAX_PRIO == INT_MAX && STARPU_MIN_PRIO == INT_MIN; for (k = 0; k < nblocks; k++) { starpu_iteration_push(k); starpu_mpi_task_insert(MPI_COMM_WORLD, &cl11, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k) : STARPU_MAX_PRIO, STARPU_RW, data_handles[k][k], 0); for (m = k+1; m<nblocks; m++) { starpu_mpi_task_insert(MPI_COMM_WORLD, &cl21, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m) : (m == k+1)?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[k][k], STARPU_RW, data_handles[m][k], 0); starpu_mpi_cache_flush(MPI_COMM_WORLD, data_handles[k][k]); if (my_distrib(k, k, nodes) == rank) starpu_data_wont_use(data_handles[k][k]); for (n = k+1; n<nblocks; n++) { if (n <= m) { starpu_mpi_task_insert(MPI_COMM_WORLD, &cl22, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m - n) : ((n == k+1) && (m == k+1))?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[n][k], STARPU_R, data_handles[m][k], STARPU_RW | STARPU_COMMUTE, data_handles[m][n], 0); } } starpu_mpi_cache_flush(MPI_COMM_WORLD, data_handles[m][k]); if (my_distrib(m, k, nodes) == rank) starpu_data_wont_use(data_handles[m][k]); } starpu_iteration_pop(); } } /* TODO: generated from compiler polyhedral analysis of classical algorithm */ static void run_cholesky_column(starpu_data_handle_t **data_handles, int rank, int nodes) { unsigned k, m, n; unsigned unbound_prio = STARPU_MAX_PRIO == INT_MAX && STARPU_MIN_PRIO == INT_MIN; /* Column */ for (n = 0; n<nblocks; n++) { starpu_iteration_push(n); /* Row */ for (m = n; m<nblocks; m++) { for (k = 0; k < n; k++) { /* Accumulate updates from TRSMs */ starpu_mpi_task_insert(MPI_COMM_WORLD, &cl22, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m - n) : ((n == k+1) && (m == k+1))?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[n][k], STARPU_R, data_handles[m][k], STARPU_RW | STARPU_COMMUTE, data_handles[m][n], 0); } k = n; if (m > n) { /* non-diagonal block, solve */ starpu_mpi_task_insert(MPI_COMM_WORLD, &cl21, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m) : (m == k+1)?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[k][k], STARPU_RW, data_handles[m][k], 0); } else { /* diagonal block, factorize */ starpu_mpi_task_insert(MPI_COMM_WORLD, &cl11, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k) : STARPU_MAX_PRIO, STARPU_RW, data_handles[k][k], 0); } } starpu_iteration_pop(); } /* Submit flushes, StarPU will fit them according to the progress */ starpu_mpi_cache_flush_all_data(MPI_COMM_WORLD); for (m = 0; m < nblocks; m++) for (n = 0; n < nblocks ; n++) starpu_data_wont_use(data_handles[m][n]); } /* TODO: generated from compiler polyhedral analysis of classical algorithm */ static void run_cholesky_antidiagonal(starpu_data_handle_t **data_handles, int rank, int nodes) { unsigned a, b, c; unsigned k, m, n; unsigned unbound_prio = STARPU_MAX_PRIO == INT_MAX && STARPU_MIN_PRIO == INT_MIN; /* double-antidiagonal number: * - a=0 contains (0,0) plus (1,0) * - a=1 contains (2,0), (1,1) plus (3,0), (2, 1) * - etc. */ for (a = 0; a < nblocks; a++) { starpu_iteration_push(a); unsigned bfirst; if (2*a < nblocks) bfirst = 0; else bfirst = 2*a - (nblocks-1); /* column within first antidiagonal for a */ for (b = bfirst; b <= a; b++) { /* column */ n = b; /* row */ m = 2*a-b; /* Accumulate updates from TRSMs */ for (c = 0; c < n; c++) { k = c; starpu_mpi_task_insert(MPI_COMM_WORLD, &cl22, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m - n) : ((n == k+1) && (m == k+1))?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[n][k], STARPU_R, data_handles[m][k], STARPU_RW | STARPU_COMMUTE, data_handles[m][n], 0); } if (b < a) { /* non-diagonal block, solve */ k = n; starpu_mpi_task_insert(MPI_COMM_WORLD, &cl21, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m) : (m == k+1)?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[k][k], STARPU_RW, data_handles[m][k], 0); } else { /* diagonal block, factorize */ k = a; starpu_mpi_task_insert(MPI_COMM_WORLD, &cl11, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k) : STARPU_MAX_PRIO, STARPU_RW, data_handles[k][k], 0); } } /* column within second antidiagonal for a */ for (b = bfirst; b <= a; b++) { /* column */ n = b; /* row */ m = 2*a-b + 1; if (m >= nblocks) /* Skip first item when even number of tiles */ continue; /* Accumulate updates from TRSMs */ for (c = 0; c < n; c++) { k = c; starpu_mpi_task_insert(MPI_COMM_WORLD, &cl22, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m - n) : ((n == k+1) && (m == k+1))?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[n][k], STARPU_R, data_handles[m][k], STARPU_RW | STARPU_COMMUTE, data_handles[m][n], 0); } /* non-diagonal block, solve */ k = n; starpu_mpi_task_insert(MPI_COMM_WORLD, &cl21, STARPU_PRIORITY, noprio ? STARPU_DEFAULT_PRIO : unbound_prio ? (int)(2*nblocks - 2*k - m) : (m == k+1)?STARPU_MAX_PRIO:STARPU_DEFAULT_PRIO, STARPU_R, data_handles[k][k], STARPU_RW, data_handles[m][k], 0); } starpu_iteration_pop(); } /* Submit flushes, StarPU will fit them according to the progress */ starpu_mpi_cache_flush_all_data(MPI_COMM_WORLD); for (m = 0; m < nblocks; m++) for (n = 0; n < nblocks ; n++) starpu_data_wont_use(data_handles[m][n]); } /* * code to bootstrap the factorization * and construct the DAG */ void dw_cholesky(float ***matA, unsigned ld, int rank, int nodes, double *timing, double *flops) { double start; double end; starpu_data_handle_t **data_handles; unsigned k, m, n; /* create all the DAG nodes */ data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *)); for(m=0 ; m<nblocks ; m++) data_handles[m] = malloc(nblocks*sizeof(starpu_data_handle_t)); for (m = 0; m < nblocks; m++) { for(n = 0; n < nblocks ; n++) { int mpi_rank = my_distrib(m, n, nodes); if (mpi_rank == rank || (check && rank == 0)) { //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, n, m); starpu_matrix_data_register(&data_handles[m][n], STARPU_MAIN_RAM, (uintptr_t)matA[m][n], ld, size/nblocks, size/nblocks, sizeof(float)); } #ifdef STARPU_DEVEL #warning TODO: make better test to only register what is needed #endif else { /* I don't own this index, but will need it for my computations */ //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, n, m); starpu_matrix_data_register(&data_handles[m][n], -1, (uintptr_t)NULL, ld, size/nblocks, size/nblocks, sizeof(float)); } if (data_handles[m][n]) { starpu_data_set_coordinates(data_handles[m][n], 2, n, m); starpu_mpi_data_register(data_handles[m][n], (m*nblocks)+n, mpi_rank); } } } starpu_mpi_wait_for_all(MPI_COMM_WORLD); starpu_mpi_barrier(MPI_COMM_WORLD); start = starpu_timing_now(); switch (submission) { case TRIANGLES: run_cholesky(data_handles, rank, nodes); break; case COLUMNS: run_cholesky_column(data_handles, rank, nodes); break; case ANTIDIAGONALS: run_cholesky_antidiagonal(data_handles, rank, nodes); break; default: STARPU_ABORT(); } starpu_mpi_wait_for_all(MPI_COMM_WORLD); starpu_mpi_barrier(MPI_COMM_WORLD); end = starpu_timing_now(); for (m = 0; m < nblocks; m++) { for(n = 0; n < nblocks ; n++) { /* Get back data on node 0 for the check */ if (check && data_handles[m][n]) starpu_mpi_get_data_on_node(MPI_COMM_WORLD, data_handles[m][n], 0); if (data_handles[m][n]) starpu_data_unregister(data_handles[m][n]); } free(data_handles[m]); } free(data_handles); if (rank == 0) { *timing = end - start; *flops = (1.0f*size*size*size)/3.0f; } } void dw_cholesky_check_computation(float ***matA, int rank, int nodes, int *correctness, double *flops, double epsilon) { unsigned nn,mm,n,m; float *rmat = malloc(size*size*sizeof(float)); for(n=0 ; n<nblocks ; n++) { for(m=0 ; m<nblocks ; m++) { for (nn = 0; nn < BLOCKSIZE; nn++) { for (mm = 0; mm < BLOCKSIZE; mm++) { rmat[mm+(m*BLOCKSIZE)+(nn+(n*BLOCKSIZE))*size] = matA[m][n][mm +nn*BLOCKSIZE]; } } } } FPRINTF(stderr, "[%d] compute explicit LLt ...\n", rank); for (mm = 0; mm < size; mm++) { for (nn = 0; nn < size; nn++) { if (nn > mm) { rmat[mm+nn*size] = 0.0f; // debug } } } float *test_mat = malloc(size*size*sizeof(float)); STARPU_ASSERT(test_mat); STARPU_SSYRK("L", "N", size, size, 1.0f, rmat, size, 0.0f, test_mat, size); FPRINTF(stderr, "[%d] comparing results ...\n", rank); if (display) { for (mm = 0; mm < size; mm++) { for (nn = 0; nn < size; nn++) { if (nn <= mm) { printf("%2.2f\t", test_mat[mm +nn*size]); } else { printf(".\t"); } } printf("\n"); } } *correctness = 1; for(n = 0; n < nblocks ; n++) { for (m = 0; m < nblocks; m++) { for (nn = BLOCKSIZE*n ; nn < BLOCKSIZE*(n+1); nn++) { for (mm = BLOCKSIZE*m ; mm < BLOCKSIZE*(m+1); mm++) { if (nn <= mm) { float orig = (1.0f/(1.0f+nn+mm)) + ((nn == mm)?1.0f*size:0.0f); float err = fabsf(test_mat[mm +nn*size] - orig) / orig; if (err > epsilon) { FPRINTF(stderr, "[%d] Error[%u, %u] --> %2.20f != %2.20f (err %2.20f)\n", rank, nn, mm, test_mat[mm +nn*size], orig, err); *correctness = 0; *flops = 0; break; } } } } } } free(rmat); free(test_mat); }