/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010 Université de Bordeaux 1 * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ #include "cg.h" #include #include #if 0 static void print_vector_from_descr(unsigned nx, TYPE *v) { unsigned i; for (i = 0; i < nx; i++) { fprintf(stderr, "%2.2e ", v[i]); } fprintf(stderr, "\n"); } static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat) { unsigned i, j; for (j = 0; j < nx; j++) { for (i = 0; i < ny; i++) { fprintf(stderr, "%2.2e ", mat[j+i*ld]); } fprintf(stderr, "\n"); } } #endif /* * Reduction accumulation methods */ #ifdef STARPU_USE_CUDA static void accumulate_variable_cuda(void *descr[], void *cl_arg) { TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]); cublasaxpy(1, (TYPE)1.0, v_src, 1, v_dst, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void accumulate_variable_cpu(void *descr[], void *cl_arg) { TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]); *v_dst = *v_dst + *v_src; } static struct starpu_perfmodel_t accumulate_variable_model = { .type = STARPU_HISTORY_BASED, .symbol = "accumulate_variable" }; starpu_codelet accumulate_variable_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = accumulate_variable_cpu, #ifdef STARPU_USE_CUDA .cuda_func = accumulate_variable_cuda, #endif .nbuffers = 2, .model = &accumulate_variable_model }; #ifdef STARPU_USE_CUDA static void accumulate_vector_cuda(void *descr[], void *cl_arg) { TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); cublasaxpy(n, (TYPE)1.0, v_src, 1, v_dst, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void accumulate_vector_cpu(void *descr[], void *cl_arg) { TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1); } static struct starpu_perfmodel_t accumulate_vector_model = { .type = STARPU_HISTORY_BASED, .symbol = "accumulate_vector" }; starpu_codelet accumulate_vector_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = accumulate_vector_cpu, #ifdef STARPU_USE_CUDA .cuda_func = accumulate_vector_cuda, #endif .nbuffers = 2, .model = &accumulate_vector_model }; /* * Reduction initialization methods */ #ifdef STARPU_USE_CUDA extern void zero_vector(TYPE *x, unsigned nelems); static void bzero_variable_cuda(void *descr[], void *cl_arg) { TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); zero_vector(v, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void bzero_variable_cpu(void *descr[], void *cl_arg) { TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); *v = (TYPE)0.0; } static struct starpu_perfmodel_t bzero_variable_model = { .type = STARPU_HISTORY_BASED, .symbol = "bzero_variable" }; starpu_codelet bzero_variable_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = bzero_variable_cpu, #ifdef STARPU_USE_CUDA .cuda_func = bzero_variable_cuda, #endif .nbuffers = 1, .model = &bzero_variable_model }; #ifdef STARPU_USE_CUDA static void bzero_vector_cuda(void *descr[], void *cl_arg) { TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); zero_vector(v, n); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void bzero_vector_cpu(void *descr[], void *cl_arg) { TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); memset(v, 0, n*sizeof(TYPE)); } static struct starpu_perfmodel_t bzero_vector_model = { .type = STARPU_HISTORY_BASED, .symbol = "bzero_vector" }; starpu_codelet bzero_vector_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = bzero_vector_cpu, #ifdef STARPU_USE_CUDA .cuda_func = bzero_vector_cuda, #endif .nbuffers = 1, .model = &bzero_vector_model }; /* * DOT kernel : s = dot(v1, v2) */ #ifdef STARPU_USE_CUDA extern void dot_host(TYPE *x, TYPE *y, unsigned nelems, TYPE *dot); static void dot_kernel_cuda(void *descr[], void *cl_arg) { TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]); unsigned n = STARPU_VECTOR_GET_NX(descr[1]); /* Contrary to cublasSdot, this function puts its result directly in * device memory, so that we don't have to transfer that value back and * forth. */ dot_host(v1, v2, n, dot); } #endif static void dot_kernel_cpu(void *descr[], void *cl_arg) { TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]); unsigned n = STARPU_VECTOR_GET_NX(descr[1]); TYPE local_dot = 0.0; /* Note that we explicitely cast the result of the DOT kernel because * some BLAS library will return a double for sdot for instance. */ local_dot = (TYPE)DOT(n, v1, 1, v2, 1); *dot = *dot + local_dot; } static struct starpu_perfmodel_t dot_kernel_model = { .type = STARPU_HISTORY_BASED, .symbol = "dot_kernel" }; static starpu_codelet dot_kernel_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = dot_kernel_cpu, #ifdef STARPU_USE_CUDA .cuda_func = dot_kernel_cuda, #endif .nbuffers = 3, .model = &dot_kernel_model }; void dot_kernel(starpu_data_handle v1, starpu_data_handle v2, starpu_data_handle s, unsigned nblocks, int use_reduction) { /* Blank the accumulation variable */ starpu_insert_task(&bzero_variable_cl, STARPU_W, s, 0); unsigned b; for (b = 0; b < nblocks; b++) { starpu_insert_task(&dot_kernel_cl, use_reduction?STARPU_REDUX:STARPU_RW, s, STARPU_R, starpu_data_get_sub_data(v1, 1, b), STARPU_R, starpu_data_get_sub_data(v2, 1, b), 0); } } /* * SCAL kernel : v1 = p1 v1 */ #ifdef STARPU_USE_CUDA static void scal_kernel_cuda(void *descr[], void *cl_arg) { TYPE p1; starpu_unpack_cl_args(cl_arg, &p1); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); /* v1 = p1 v1 */ TYPE alpha = p1; cublasscal(n, alpha, v1, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void scal_kernel_cpu(void *descr[], void *cl_arg) { TYPE alpha; starpu_unpack_cl_args(cl_arg, &alpha); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); /* v1 = alpha v1 */ SCAL(n, alpha, v1, 1); } static struct starpu_perfmodel_t scal_kernel_model = { .type = STARPU_HISTORY_BASED, .symbol = "scal_kernel" }; static starpu_codelet scal_kernel_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = scal_kernel_cpu, #ifdef STARPU_USE_CUDA .cuda_func = scal_kernel_cuda, #endif .nbuffers = 1, .model = &scal_kernel_model }; /* * GEMV kernel : v1 = p1 * v1 + p2 * M v2 */ #ifdef STARPU_USE_CUDA static void gemv_kernel_cuda(void *descr[], void *cl_arg) { TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]); TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]); unsigned ld = STARPU_MATRIX_GET_LD(descr[1]); unsigned nx = STARPU_MATRIX_GET_NX(descr[1]); unsigned ny = STARPU_MATRIX_GET_NY(descr[1]); TYPE alpha, beta; starpu_unpack_cl_args(cl_arg, &beta, &alpha); /* Compute v1 = alpha M v2 + beta v1 */ cublasgemv('N', nx, ny, alpha, M, ld, v2, 1, beta, v1, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void gemv_kernel_cpu(void *descr[], void *cl_arg) { TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]); TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]); unsigned ld = STARPU_MATRIX_GET_LD(descr[1]); unsigned nx = STARPU_MATRIX_GET_NX(descr[1]); unsigned ny = STARPU_MATRIX_GET_NY(descr[1]); TYPE alpha, beta; starpu_unpack_cl_args(cl_arg, &beta, &alpha); int worker_size = starpu_combined_worker_get_size(); if (worker_size > 1) { /* Parallel CPU task */ int rank = starpu_combined_worker_get_rank(); int block_size = (ny + worker_size - 1)/worker_size; int new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank; nx = new_nx; v1 = &v1[block_size*rank]; M = &M[block_size*rank]; } /* Compute v1 = alpha M v2 + beta v1 */ GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1); } static struct starpu_perfmodel_t gemv_kernel_model = { .type = STARPU_HISTORY_BASED, .symbol = "gemv_kernel" }; static starpu_codelet gemv_kernel_cl = { .where = STARPU_CPU|STARPU_CUDA, .type = STARPU_SPMD, .max_parallelism = INT_MAX, .cpu_func = gemv_kernel_cpu, #ifdef STARPU_USE_CUDA .cuda_func = gemv_kernel_cuda, #endif .nbuffers = 3, .model = &gemv_kernel_model }; void gemv_kernel(starpu_data_handle v1, starpu_data_handle matrix, starpu_data_handle v2, TYPE p1, TYPE p2, unsigned nblocks, int use_reduction) { unsigned b1, b2; for (b2 = 0; b2 < nblocks; b2++) { starpu_insert_task(&scal_kernel_cl, STARPU_RW, starpu_data_get_sub_data(v1, 1, b2), STARPU_VALUE, &p1, sizeof(p1), 0); } for (b2 = 0; b2 < nblocks; b2++) { for (b1 = 0; b1 < nblocks; b1++) { TYPE one = 1.0; starpu_insert_task(&gemv_kernel_cl, use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2), STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1), STARPU_R, starpu_data_get_sub_data(v2, 1, b1), STARPU_VALUE, &one, sizeof(one), STARPU_VALUE, &p2, sizeof(p2), 0); } } } /* * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2 */ #ifdef STARPU_USE_CUDA static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg) { TYPE p1, p2; starpu_unpack_cl_args(cl_arg, &p1, &p2); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); /* Compute v1 = p1 * v1 + p2 * v2. * v1 = p1 v1 * v1 = v1 + p2 v2 */ cublasscal(n, p1, v1, 1); cublasaxpy(n, p2, v2, 1, v1, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void scal_axpy_kernel_cpu(void *descr[], void *cl_arg) { TYPE p1, p2; starpu_unpack_cl_args(cl_arg, &p1, &p2); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned nx = STARPU_VECTOR_GET_NX(descr[0]); /* Compute v1 = p1 * v1 + p2 * v2. * v1 = p1 v1 * v1 = v1 + p2 v2 */ SCAL(nx, p1, v1, 1); AXPY(nx, p2, v2, 1, v1, 1); } static struct starpu_perfmodel_t scal_axpy_kernel_model = { .type = STARPU_HISTORY_BASED, .symbol = "scal_axpy_kernel" }; static starpu_codelet scal_axpy_kernel_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = scal_axpy_kernel_cpu, #ifdef STARPU_USE_CUDA .cuda_func = scal_axpy_kernel_cuda, #endif .nbuffers = 2, .model = &scal_axpy_kernel_model }; void scal_axpy_kernel(starpu_data_handle v1, TYPE p1, starpu_data_handle v2, TYPE p2, unsigned nblocks) { unsigned b; for (b = 0; b < nblocks; b++) { starpu_insert_task(&scal_axpy_kernel_cl, STARPU_RW, starpu_data_get_sub_data(v1, 1, b), STARPU_R, starpu_data_get_sub_data(v2, 1, b), STARPU_VALUE, &p1, sizeof(p1), STARPU_VALUE, &p2, sizeof(p2), 0); } } /* * AXPY kernel : v1 = v1 + p1 * v2 */ #ifdef STARPU_USE_CUDA static void axpy_kernel_cuda(void *descr[], void *cl_arg) { TYPE p1; starpu_unpack_cl_args(cl_arg, &p1); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned n = STARPU_VECTOR_GET_NX(descr[0]); /* Compute v1 = v1 + p1 * v2. */ cublasaxpy(n, p1, v2, 1, v1, 1); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static void axpy_kernel_cpu(void *descr[], void *cl_arg) { TYPE p1; starpu_unpack_cl_args(cl_arg, &p1); TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned nx = STARPU_VECTOR_GET_NX(descr[0]); /* Compute v1 = p1 * v1 + p2 * v2. */ AXPY(nx, p1, v2, 1, v1, 1); } static struct starpu_perfmodel_t axpy_kernel_model = { .type = STARPU_HISTORY_BASED, .symbol = "axpy_kernel" }; static starpu_codelet axpy_kernel_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = axpy_kernel_cpu, #ifdef STARPU_USE_CUDA .cuda_func = axpy_kernel_cuda, #endif .nbuffers = 2, .model = &axpy_kernel_model }; void axpy_kernel(starpu_data_handle v1, starpu_data_handle v2, TYPE p1, unsigned nblocks) { unsigned b; for (b = 0; b < nblocks; b++) { starpu_insert_task(&axpy_kernel_cl, STARPU_RW, starpu_data_get_sub_data(v1, 1, b), STARPU_R, starpu_data_get_sub_data(v2, 1, b), STARPU_VALUE, &p1, sizeof(p1), 0); } } /* * COPY kernel : vector_dst <- vector_src */ static void copy_handle_cpu(void *descr[], void *cl_arg) { TYPE *dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned nx = STARPU_VECTOR_GET_NX(descr[0]); size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]); memcpy(dst, src, nx*elemsize); } #ifdef STARPU_USE_CUDA static void copy_handle_cuda(void *descr[], void *cl_arg) { TYPE *dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]); TYPE *src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]); unsigned nx = STARPU_VECTOR_GET_NX(descr[0]); size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]); cudaMemcpyAsync(dst, src, nx*elemsize, cudaMemcpyDeviceToDevice, starpu_cuda_get_local_stream()); cudaStreamSynchronize(starpu_cuda_get_local_stream()); } #endif static struct starpu_perfmodel_t copy_handle_model = { .type = STARPU_HISTORY_BASED, .symbol = "copy_handle" }; static starpu_codelet copy_handle_cl = { .where = STARPU_CPU|STARPU_CUDA, .cpu_func = copy_handle_cpu, #ifdef STARPU_USE_CUDA .cuda_func = copy_handle_cuda, #endif .nbuffers = 2, .model = ©_handle_model }; void copy_handle(starpu_data_handle dst, starpu_data_handle src, unsigned nblocks) { unsigned b; for (b = 0; b < nblocks; b++) { starpu_insert_task(©_handle_cl, STARPU_W, starpu_data_get_sub_data(dst, 1, b), STARPU_R, starpu_data_get_sub_data(src, 1, b), 0); } }