# StarPU --- Runtime system for heterogeneous multicore architectures. # # Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria # # StarPU is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2.1 of the License, or (at # your option) any later version. # # StarPU is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU Lesser General Public License in COPYING.LGPL for more details. # import Libdl using StarPU using LinearAlgebra @target STARPU_CPU+STARPU_CUDA @codelet function matrix_mult(m1 :: Matrix{Float32}, m2 :: Matrix{Float32}, m3 :: Matrix{Float32}, stride ::Int32) :: Nothing width_m2 :: Int32 = width(m2) height_m1 :: Int32 = height(m1) width_m1 :: Int32 = width(m1) # Naive version @parallel for j in (1 : width_m2) @parallel for i in (1 : height_m1) sum :: Float32 = 0. for k in (1 : width_m1) sum = sum + m1[i, k] * m2[k, j] end m3[i, j] = sum end end # ##### Tiled and unrolled version # for l in (1 : width_m2) # for m in (1 : height_m1) # m3[m,l] = 0 # end # end # @parallel for i in (1 : STRIDE : height_m1) # for k in (1 : STRIDE : width_m1 ) # for j in (1 : STRIDE : width_m2 ) # for kk in (k : 4 : k+STRIDE-1) # for jj in (j : 2 : j+STRIDE-1) # alpha00 :: Float32 =m2[kk,jj] # alpha01 :: Float32 =m2[kk,jj+1] # alpha10 :: Float32 =m2[kk+1,jj] # alpha11 :: Float32 =m2[kk+1,jj+1] # alpha20 :: Float32 =m2[kk+2,jj] # alpha21 :: Float32 =m2[kk+2,jj+1] # alpha30 :: Float32 =m2[kk+3,jj] # alpha31 :: Float32 =m2[kk+3,jj+1] # for ii in (i : 1 : i+STRIDE-1) # m3[ii, jj] = m3[ii, jj] + m1[ii, kk] * alpha00 + m1[ii, kk+1] * alpha10 + m1[ii, kk+2] * alpha20 + m1[ii,kk+3]*alpha30 # m3[ii, jj+1] = m3[ii, jj+1] + m1[ii, kk] * alpha01 + m1[ii, kk+1] * alpha11 + m1[ii, kk+2]*alpha21 + m1[ii,kk+3]*alpha31 # end # end # end # end # end # end return end starpu_init() function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy, stride) scale= 3 tmin=0 vert = starpu_data_filter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx) horiz = starpu_data_filter(STARPU_MATRIX_FILTER_BLOCK, nslicesy) @starpu_block let hA,hB,hC = starpu_data_register(A, B, C) starpu_data_partition(hB, vert) starpu_data_partition(hA, horiz) starpu_data_map_filters(hC, vert, horiz) tmin=0 for i in (1 : 10 ) t=time_ns() @starpu_sync_tasks begin for taskx in (1 : nslicesx) for tasky in (1 : nslicesy) starpu_task_insert(codelet_name = "matrix_mult", modes = [STARPU_R, STARPU_R, STARPU_W], handles = [hA[tasky], hB[taskx], hC[taskx, tasky]], cl_arg = (Int32(stride),)) end end end t=time_ns()-t if (tmin==0 || tmin>t) tmin=t end end end return tmin end function check(A, B, C) expected = A * B height,width = size(C) for i in 1:height for j in 1:width got = C[i, j] exp = expected[i, j] err = abs(exp - got) / exp if err > 0.0001 error("[$i] -> $got != $exp (err $err)") end end end end function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy, stride) for dim in (start_dim : step_dim : stop_dim) A = Array(rand(Cfloat, dim, dim)) B = Array(rand(Cfloat, dim, dim)) C = zeros(Float32, dim, dim) mt = multiply_with_starpu(A, B, C, nslicesx, nslicesy, stride) flops = (2*dim-1)*dim*dim/mt size=dim*dim*4*3/1024/1024 println(io,"$size $flops") println("$size $flops") check(A, B, C) end end if size(ARGS, 1) < 2 stride=4 filename="x.dat" else stride=parse(Int, ARGS[1]) filename=ARGS[2] end io=open(filename,"w") compute_times(io,16*stride,4*stride,128*stride,2,2,stride) close(io) starpu_shutdown()