/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010, 2015 Université de Bordeaux * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ /* This counts how many fall inside the circle quarter */ #include #define MAXNBLOCKS 128 #define MAXTHREADSPERBLOCK 256 static __global__ void monte_carlo(float *x, float *y, unsigned n, unsigned long *output_cnt) { __shared__ unsigned scnt[MAXTHREADSPERBLOCK]; /* Do we have a successful shot ? */ const int tid = threadIdx.x + blockIdx.x*blockDim.x; const int nthreads = gridDim.x * blockDim.x; /* Blank the shared mem buffer */ if (threadIdx.x < MAXTHREADSPERBLOCK) scnt[threadIdx.x] = 0; __syncthreads(); int ind; for (ind = tid; ind < n; ind += nthreads) { float xval = (2.0f * x[ind] - 1.0f); float yval = (2.0f * y[ind] - 1.0f); float dist = (xval*xval + yval*yval); unsigned long success = (dist <= 1.0f)?1:0; scnt[threadIdx.x] += success; } __syncthreads(); /* Perform a reduction to compute the sum on each thread within that block */ /* NB: We assume that the number of threads per block is a power of 2 ! */ unsigned long s; for (s = blockDim.x/2; s!=0; s>>=1) { if (threadIdx.x < s) scnt[threadIdx.x] += scnt[threadIdx.x + s]; __syncthreads(); } /* report the number of successful shots in the block */ if (threadIdx.x == 0) output_cnt[blockIdx.x] = scnt[0]; __syncthreads(); } static __global__ void sum_per_block_cnt(unsigned long *output_cnt, unsigned long *cnt) { __shared__ unsigned long accumulator[MAXNBLOCKS]; unsigned i; /* Load the values from global mem */ for (i = 0; i < blockDim.x; i++) accumulator[i] = output_cnt[i]; __syncthreads(); /* Perform a reduction in shared memory */ unsigned s; for (s = blockDim.x/2; s!=0; s>>=1) { if (threadIdx.x < s) accumulator[threadIdx.x] += accumulator[threadIdx.x + s]; __syncthreads(); } /* Save the result in global memory */ if (threadIdx.x == 0) *cnt = *cnt + accumulator[0]; } extern "C" void pi_redux_cuda_kernel(float *x, float *y, unsigned n, unsigned long *shot_cnt) { cudaError_t cures; /* How many blocks do we use ? */ unsigned nblocks = 128; // TODO STARPU_ASSERT(nblocks <= MAXNBLOCKS); STARPU_ASSERT((n % nblocks) == 0); unsigned long *per_block_cnt; cudaMalloc((void **)&per_block_cnt, nblocks*sizeof(unsigned long)); /* How many threads per block ? At most 256, but no more threads than * there are entries to process per block. */ unsigned nthread_per_block = STARPU_MIN(MAXTHREADSPERBLOCK, (n / nblocks)); /* each entry of per_block_cnt contains the number of successful shots * in the corresponding block. */ monte_carlo<<>>(x, y, n, per_block_cnt); /* Note that we do not synchronize between kernel calls because there is an implicit serialization */ /* compute the total number of successful shots by adding the elements * of the per_block_cnt array */ sum_per_block_cnt<<<1, nblocks, 0, starpu_cuda_get_local_stream()>>>(per_block_cnt, shot_cnt); cures = cudaStreamSynchronize(starpu_cuda_get_local_stream()); if (cures) STARPU_CUDA_REPORT_ERROR(cures); cudaFree(per_block_cnt); }