/* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010, 2015 Université de Bordeaux * Copyright (C) 2010, 2011, 2012, 2013 CNRS * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */ /* * This examples demonstrates how to use multiple linear regression models. The duration of the task test_mlr will be computed using the following equation: T = a + b * (M^2*N) + c * (N^3*K) where M, N, K are the parameters of the task, exponents are coming from cl.model->combinations[..][..] and finally a, b, c are coefficients which mostly depend on the machine speed. These coefficients are going to be automatically computed using least square method. */ #include #include #include #include long sum; /* Performance function of the task, which is in this case very simple, as the parameter values just need to be written in the array "parameters" */ void cl_perf_func(struct starpu_task *task, double *parameters) { starpu_codelet_unpack_args(task->cl_arg, ¶meters[0], ¶meters[1], ¶meters[2]); } /* Function of the task that will be executed. In this case running dummy cycles, just to make sure task duration is significant */ void cpu_func(void *buffers[], void *cl_arg) { long i; double m,n,k; starpu_codelet_unpack_args(cl_arg, &m, &n, &k); for(i=0; i < (long) (m*m*n); i++) sum+=i; for(i=0; i < (long) (n*n*n*k); i++) sum+=i; } int main(int argc, char **argv) { /* Initialization */ unsigned i,j; struct starpu_codelet cl; int ret; ret = starpu_init(NULL); if (ret == -ENODEV) return 77; /* Allocating and naming codelet, similar to any other StarPU program */ memset(&cl, 0, sizeof(cl)); cl.cpu_funcs[0] = cpu_func; cl.cpu_funcs_name[0] = "mlr_codelet"; cl.nbuffers = 0; cl.name="test_mlr"; /* ############################################ */ /* Start of the part specific to multiple linear regression perfmodels */ /* Defining perfmodel, number of parameters and their names */ struct starpu_perfmodel *model = calloc(1,sizeof(struct starpu_perfmodel)); cl.model = model; cl.model->type = STARPU_MULTIPLE_REGRESSION_BASED; cl.model->symbol = cl.name; cl.model->parameters = cl_perf_func; cl.model->nparameters = 3; cl.model->parameters_names = (const char **) calloc(1, cl.model->nparameters*sizeof(char *)); cl.model->parameters_names[0] = "M"; cl.model->parameters_names[1] = "N"; cl.model->parameters_names[2] = "K"; /* Defining the equation for modeling duration of the task */ /* Refer to the explanation and equation on the top of this file to get more detailed explanation */ cl.model->ncombinations = 2; cl.model->combinations = (unsigned **) malloc(cl.model->ncombinations*sizeof(unsigned *)); if (cl.model->combinations) { for (i=0; i < cl.model->ncombinations; i++) { cl.model->combinations[i] = (unsigned *) malloc(cl.model->nparameters*sizeof(unsigned)); } } cl.model->combinations[0][0] = 2; cl.model->combinations[0][1] = 1; cl.model->combinations[0][2] = 0; cl.model->combinations[1][0] = 0; cl.model->combinations[1][1] = 3; cl.model->combinations[1][2] = 1; /* End of the part specific to multiple linear regression perfmodels */ /* ############################################ */ sum=0; double m,n,k; /* Giving pseudo-random values to the M,N,K parameters and inserting tasks */ for(i=0; i < 42; i++) { m = (double) ((rand() % 10)+1); n = (double) ((rand() % 10)+1); k = (double) ((rand() % 10)+1); for(j=0; j < 42; j++) starpu_insert_task(&cl, STARPU_VALUE, &m, sizeof(double), STARPU_VALUE, &n, sizeof(double), STARPU_VALUE, &k, sizeof(double), 0); } starpu_shutdown(); return 0; }