|
@@ -186,14 +186,14 @@ static void partition_mult_data(void)
|
|
|
|
|
|
* into blocks, note that we are using a FORTRAN ordering so that the
|
|
|
* name of the filters are a bit misleading */
|
|
|
- struct starpu_data_filter f = {
|
|
|
+ struct starpu_data_filter vert = {
|
|
|
.filter_func = starpu_vertical_block_filter_func,
|
|
|
.nchildren = nslicesx,
|
|
|
.get_nchildren = NULL,
|
|
|
.get_child_ops = NULL
|
|
|
};
|
|
|
|
|
|
- struct starpu_data_filter f2 = {
|
|
|
+ struct starpu_data_filter horiz = {
|
|
|
.filter_func = starpu_block_filter_func,
|
|
|
.nchildren = nslicesy,
|
|
|
.get_nchildren = NULL,
|
|
@@ -237,17 +237,17 @@ static void partition_mult_data(void)
|
|
|
* enforce memory consistency.
|
|
|
*/
|
|
|
|
|
|
- starpu_data_partition(B_handle, &f);
|
|
|
- starpu_data_partition(A_handle, &f2);
|
|
|
+ starpu_data_partition(B_handle, &vert);
|
|
|
+ starpu_data_partition(A_handle, &horiz);
|
|
|
|
|
|
|
|
|
* is the handle of the data to partition, the second argument is the
|
|
|
* number of filters to apply recursively. Filters are applied in the
|
|
|
* same order as the arguments.
|
|
|
- * This would be equivalent to starpu_data_partition(C_handle, &f) and
|
|
|
- * then applying f2 on each sub-data (ie. each column of C)
|
|
|
+ * This would be equivalent to starpu_data_partition(C_handle, &vert) and
|
|
|
+ * then applying horiz on each sub-data (ie. each column of C)
|
|
|
*/
|
|
|
- starpu_data_map_filters(C_handle, 2, &f, &f2);
|
|
|
+ starpu_data_map_filters(C_handle, 2, &vert, &horiz);
|
|
|
}
|
|
|
|
|
|
static struct starpu_perfmodel_t mult_perf_model = {
|