|
@@ -0,0 +1,360 @@
|
|
|
+/* StarPU --- Runtime system for heterogeneous multicore architectures.
|
|
|
+ *
|
|
|
+ * Copyright (C) 2016 Inria
|
|
|
+ *
|
|
|
+ * StarPU is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU Lesser General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2.1 of the License, or (at
|
|
|
+ * your option) any later version.
|
|
|
+ *
|
|
|
+ * StarPU is distributed in the hope that it will be useful, but
|
|
|
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
+ *
|
|
|
+ * See the GNU Lesser General Public License in COPYING.LGPL for more details.
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * This example illustrates how to distribute a pre-existing data structure to
|
|
|
+ * a set of computing nodes using StarPU-MPI routines.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <stdlib.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <assert.h>
|
|
|
+#include <math.h>
|
|
|
+#include <starpu.h>
|
|
|
+#include <starpu_mpi.h>
|
|
|
+
|
|
|
+#define VERBOSE 0
|
|
|
+
|
|
|
+static int N = 16; /* Matrix size */
|
|
|
+static int BS = 4; /* Block size */
|
|
|
+
|
|
|
+#define NB ((N)/(BS)) /* Number of blocks */
|
|
|
+
|
|
|
+/* Matrices. Will be allocated as regular, linearized C arrays */
|
|
|
+static double *A = NULL; /* A will be partitioned as BS rows x N cols blocks */
|
|
|
+static double *B = NULL; /* B will be partitioned as N rows x BS cols blocks */
|
|
|
+static double *C = NULL; /* C will be partitioned as BS rows x BS cols blocks */
|
|
|
+
|
|
|
+/* Arrays of data handles for managing matrix blocks */
|
|
|
+static starpu_data_handle_t *A_h;
|
|
|
+static starpu_data_handle_t *B_h;
|
|
|
+static starpu_data_handle_t *C_h;
|
|
|
+
|
|
|
+static int comm_rank; /* mpi rank of the process */
|
|
|
+static int comm_size; /* size of the mpi session */
|
|
|
+
|
|
|
+static void alloc_matrices(void)
|
|
|
+{
|
|
|
+ /* Regular 'malloc' can also be used instead, however, starpu_malloc make sure that
|
|
|
+ * the area is allocated in suitably pinned memory to improve data transfers, especially
|
|
|
+ * with CUDA */
|
|
|
+ starpu_malloc((void **)&A, N*N*sizeof(double));
|
|
|
+ starpu_malloc((void **)&B, N*N*sizeof(double));
|
|
|
+ starpu_malloc((void **)&C, N*N*sizeof(double));
|
|
|
+}
|
|
|
+
|
|
|
+static void free_matrices(void)
|
|
|
+{
|
|
|
+ starpu_free(A);
|
|
|
+ starpu_free(B);
|
|
|
+ starpu_free(C);
|
|
|
+}
|
|
|
+
|
|
|
+static void init_matrices(void)
|
|
|
+{
|
|
|
+ int row,col;
|
|
|
+ for (row = 0; row < N; row++)
|
|
|
+ {
|
|
|
+ for (col = 0; col < N; col++)
|
|
|
+ {
|
|
|
+ A[row*N+col] = (row==col)?2:0;
|
|
|
+ B[row*N+col] = row*N+col;
|
|
|
+ C[row*N+col] = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if VERBOSE
|
|
|
+static void disp_matrix(double *m)
|
|
|
+{
|
|
|
+ int row,col;
|
|
|
+ for (row = 0; row < N; row++)
|
|
|
+ {
|
|
|
+ for (col = 0; col < N; col++)
|
|
|
+ {
|
|
|
+ printf("\t%.2lf", m[row*N+col]);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+static void check_result(void) {
|
|
|
+ int row,col;
|
|
|
+ for (row = 0; row < N; row++)
|
|
|
+ {
|
|
|
+ for (col = 0; col < N; col++)
|
|
|
+ {
|
|
|
+ if (fabs(C[row*N+col] - 2*(row*N+col)) > 1.0)
|
|
|
+ {
|
|
|
+ fprintf(stderr, "check failed\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+#if VERBOSE
|
|
|
+ printf("success\n");
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* Register the matrix blocks to StarPU and to StarPU-MPI */
|
|
|
+static void register_matrices()
|
|
|
+{
|
|
|
+ A_h = calloc(NB, sizeof(starpu_data_handle_t));
|
|
|
+ B_h = calloc(NB, sizeof(starpu_data_handle_t));
|
|
|
+ C_h = calloc(NB*NB, sizeof(starpu_data_handle_t));
|
|
|
+
|
|
|
+ /* Memory region, where the data being registered resides.
|
|
|
+ * In this example, all blocks are allocated by node 0, thus
|
|
|
+ * - node 0 specifies STARPU_MAIN_RAM to indicate that it owns the block in its main memory
|
|
|
+ * - nodes !0 specify -1 to indicate that they don't have a copy of the block initially
|
|
|
+ */
|
|
|
+ int mr = (comm_rank == 0) ? STARPU_MAIN_RAM : -1;
|
|
|
+
|
|
|
+ /* mpi tag used for the block */
|
|
|
+ int tag = 0;
|
|
|
+
|
|
|
+ int b_row,b_col;
|
|
|
+
|
|
|
+ for (b_row = 0; b_row < NB; b_row++) {
|
|
|
+ /* Register a block to StarPU */
|
|
|
+ starpu_matrix_data_register(&A_h[b_row],
|
|
|
+ mr,
|
|
|
+ (comm_rank == 0)?(uintptr_t)(A+b_row*BS*N):0, N, N, BS,
|
|
|
+ sizeof(double));
|
|
|
+
|
|
|
+ /* Register a block to StarPU-MPI, specifying the mpi tag to use for transfering the block
|
|
|
+ * and the rank of the owner node.
|
|
|
+ *
|
|
|
+ * Note: StarPU-MPI is an autonomous layer built on top of StarPU, hence the two separate
|
|
|
+ * registration steps.
|
|
|
+ */
|
|
|
+ starpu_mpi_data_register(A_h[b_row], tag++, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (b_col = 0; b_col < NB; b_col++) {
|
|
|
+ starpu_matrix_data_register(&B_h[b_col],
|
|
|
+ mr,
|
|
|
+ (comm_rank == 0)?(uintptr_t)(B+b_col*BS):0, N, BS, N,
|
|
|
+ sizeof(double));
|
|
|
+ starpu_mpi_data_register(B_h[b_col], tag++, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (b_row = 0; b_row < NB; b_row++) {
|
|
|
+ for (b_col = 0; b_col < NB; b_col++) {
|
|
|
+ starpu_matrix_data_register(&C_h[b_row*NB+b_col],
|
|
|
+ mr,
|
|
|
+ (comm_rank == 0)?(uintptr_t)(C+b_row*BS*N+b_col*BS):0, N, BS, BS,
|
|
|
+ sizeof(double));
|
|
|
+ starpu_mpi_data_register(C_h[b_row*NB+b_col], tag++, 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Transfer ownership of the C matrix blocks following some user-defined distribution over the nodes.
|
|
|
+ * Note: since C will be Write-accessed, it will implicitly define which node perform the task
|
|
|
+ * associated to a given block. */
|
|
|
+static void distribute_matrix_C(void)
|
|
|
+{
|
|
|
+ int b_row,b_col;
|
|
|
+ for (b_row = 0; b_row < NB; b_row++)
|
|
|
+ {
|
|
|
+ for (b_col = 0; b_col < NB; b_col++)
|
|
|
+ {
|
|
|
+ starpu_data_handle_t h = C_h[b_row*NB+b_col];
|
|
|
+
|
|
|
+ /* Select the node where the block should be computed. */
|
|
|
+ int target_rank = (b_row+b_col)%comm_size;
|
|
|
+
|
|
|
+ /* Move the block on to its new owner. */
|
|
|
+ starpu_mpi_get_data_on_node(MPI_COMM_WORLD, h, target_rank);
|
|
|
+ starpu_mpi_data_set_rank(h, target_rank);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Transfer ownership of the C matrix blocks back to node 0, for display purpose. This is not mandatory. */
|
|
|
+static void undistribute_matrix_C(void)
|
|
|
+{
|
|
|
+ int b_row,b_col;
|
|
|
+ for (b_row = 0; b_row < NB; b_row++) {
|
|
|
+ for (b_col = 0; b_col < NB; b_col++) {
|
|
|
+ starpu_data_handle_t h = C_h[b_row*NB+b_col];
|
|
|
+ starpu_mpi_get_data_on_node(MPI_COMM_WORLD, h, 0);
|
|
|
+ starpu_mpi_data_set_rank(h, 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Unregister matrices from the StarPU management. */
|
|
|
+static void unregister_matrices()
|
|
|
+{
|
|
|
+ int b_row,b_col;
|
|
|
+
|
|
|
+ for (b_row = 0; b_row < NB; b_row++) {
|
|
|
+ starpu_data_unregister(A_h[b_row]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (b_col = 0; b_col < NB; b_col++) {
|
|
|
+ starpu_data_unregister(B_h[b_col]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (b_row = 0; b_row < NB; b_row++) {
|
|
|
+ for (b_col = 0; b_col < NB; b_col++) {
|
|
|
+ starpu_data_unregister(C_h[b_row*NB+b_col]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ free(A_h);
|
|
|
+ free(B_h);
|
|
|
+ free(C_h);
|
|
|
+}
|
|
|
+
|
|
|
+/* Perform the actual computation. In a real-life case, this would rather call a BLAS 'gemm' routine
|
|
|
+ * instead. */
|
|
|
+static void cpu_mult(void *handles[], STARPU_ATTRIBUTE_UNUSED void *arg)
|
|
|
+{
|
|
|
+ double *block_A = (double *)STARPU_MATRIX_GET_PTR(handles[0]);
|
|
|
+ double *block_B = (double *)STARPU_MATRIX_GET_PTR(handles[1]);
|
|
|
+ double *block_C = (double *)STARPU_MATRIX_GET_PTR(handles[2]);
|
|
|
+
|
|
|
+ unsigned n_col_A = STARPU_MATRIX_GET_NX(handles[0]);
|
|
|
+ unsigned n_col_B = STARPU_MATRIX_GET_NX(handles[1]);
|
|
|
+ unsigned n_col_C = STARPU_MATRIX_GET_NX(handles[2]);
|
|
|
+
|
|
|
+ unsigned n_row_A = STARPU_MATRIX_GET_NY(handles[0]);
|
|
|
+ unsigned n_row_B = STARPU_MATRIX_GET_NY(handles[1]);
|
|
|
+ unsigned n_row_C = STARPU_MATRIX_GET_NY(handles[2]);
|
|
|
+
|
|
|
+ unsigned ld_A = STARPU_MATRIX_GET_LD(handles[0]);
|
|
|
+ unsigned ld_B = STARPU_MATRIX_GET_LD(handles[1]);
|
|
|
+ unsigned ld_C = STARPU_MATRIX_GET_LD(handles[2]);
|
|
|
+
|
|
|
+ /* Sanity check, not needed in real life case */
|
|
|
+ assert(n_col_C == n_col_B);
|
|
|
+ assert(n_row_C == n_row_A);
|
|
|
+ assert(n_col_A == n_row_B);
|
|
|
+
|
|
|
+ int i,j,k;
|
|
|
+ for (k = 0; k < n_row_C; k++) {
|
|
|
+ for (j = 0; j < n_col_C; j++) {
|
|
|
+ for (i = 0; i < n_col_A; i++) {
|
|
|
+ block_C[k*ld_C+j] += block_A[k*ld_A+i] * block_B[i*ld_B+j];
|
|
|
+ }
|
|
|
+
|
|
|
+#if VERBOSE
|
|
|
+ /* For illustration purpose, shows which node computed
|
|
|
+ * the block in the decimal part of the cell */
|
|
|
+ block_C[k*ld_C+j] += comm_rank / 100.0;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Define a StarPU 'codelet' structure for the matrix multiply kernel above.
|
|
|
+ * This structure enable specifying multiple implementations for the kernel (such as CUDA or OpenCL versions)
|
|
|
+ */
|
|
|
+static struct starpu_codelet gemm_cl =
|
|
|
+{
|
|
|
+ .cpu_funcs = {cpu_mult}, /* cpu implementation(s) of the routine */
|
|
|
+ .nbuffers = 3, /* number of data handles referenced by this routine */
|
|
|
+ .modes = {STARPU_R, STARPU_R, STARPU_RW} /* access modes for each data handle */
|
|
|
+};
|
|
|
+
|
|
|
+int main(int argc, char *argv[])
|
|
|
+{
|
|
|
+ /* Initializes the StarPU core */
|
|
|
+ int ret = starpu_init(NULL);
|
|
|
+ STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
|
|
|
+
|
|
|
+ /* Initializes the StarPU-MPI layer */
|
|
|
+ ret = starpu_mpi_init(&argc, &argv, 1);
|
|
|
+ STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init");
|
|
|
+
|
|
|
+ /* Parse the matrix size and block size optional args */
|
|
|
+ if (argc > 1) {
|
|
|
+ N = atoi(argv[1]);
|
|
|
+ if (N < 1) {
|
|
|
+ fprintf(stderr, "invalid matrix size\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ if (argc > 2) {
|
|
|
+ BS = atoi(argv[2]);
|
|
|
+ }
|
|
|
+ if (BS < 1 || N % BS != 0) {
|
|
|
+ fprintf(stderr, "invalid block size\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Get the process rank and session size */
|
|
|
+ starpu_mpi_comm_rank(MPI_COMM_WORLD, &comm_rank);
|
|
|
+ starpu_mpi_comm_size(MPI_COMM_WORLD, &comm_size);
|
|
|
+
|
|
|
+ if (comm_rank == 0)
|
|
|
+ {
|
|
|
+#if VERBOSE
|
|
|
+ printf("N = %d\n", N);
|
|
|
+ printf("BS = %d\n", BS);
|
|
|
+ printf("NB = %d\n", NB);
|
|
|
+ printf("comm_size = %d\n", comm_size);
|
|
|
+#endif
|
|
|
+ /* In this example, node rank 0 performs all the memory allocations and initializations,
|
|
|
+ * and the blocks are later distributed on the other nodes.
|
|
|
+ * This is not mandatory however, and blocks could be allocated on other nodes right
|
|
|
+ * from the beginning, depending on the application needs (in particular for the case
|
|
|
+ * where the session wide data footprint is larger than a single node available memory. */
|
|
|
+ alloc_matrices();
|
|
|
+ init_matrices();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Register matrices to StarPU and StarPU-MPI */
|
|
|
+ register_matrices();
|
|
|
+ /* Distribute C blocks */
|
|
|
+ distribute_matrix_C();
|
|
|
+
|
|
|
+ int b_row,b_col;
|
|
|
+
|
|
|
+ for (b_row = 0; b_row < NB; b_row++)
|
|
|
+ {
|
|
|
+ for (b_col = 0; b_col < NB; b_col++)
|
|
|
+ {
|
|
|
+ starpu_mpi_task_insert(MPI_COMM_WORLD, &gemm_cl,
|
|
|
+ STARPU_R, A_h[b_row],
|
|
|
+ STARPU_R, B_h[b_col],
|
|
|
+ STARPU_RW, C_h[b_row*NB+b_col],
|
|
|
+ 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ starpu_task_wait_for_all();
|
|
|
+
|
|
|
+ undistribute_matrix_C();
|
|
|
+ unregister_matrices();
|
|
|
+
|
|
|
+ if (comm_rank == 0) {
|
|
|
+#if VERBOSE
|
|
|
+ disp_matrix(C);
|
|
|
+#endif
|
|
|
+ check_result();
|
|
|
+ free_matrices();
|
|
|
+ }
|
|
|
+
|
|
|
+ starpu_mpi_shutdown();
|
|
|
+ starpu_shutdown();
|
|
|
+}
|
|
|
+
|