123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- //---------------------------------------------------------------------
- //
- // Copyright 2010 Intel Corporation
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- //---------------------------------------------------------------------
- #include "header.h"
- void initialize() {
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- // This subroutine initializes the field variable u using
- // tri-linear transfinite interpolation of the boundary values
- //---------------------------------------------------------------------
-
- int c, i, j, k, m, ii, jj, kk, ix, iy, iz;
- double xi, eta, zeta, Pface[5*3*2], Pxi, Peta,
- Pzeta, temp[5];
- #define Pface(m,n,i) Pface[(m-1)+5*((n-1)+3*(i-1))]
- #define temp(m) temp[m-1]
- //---------------------------------------------------------------------
- // Later (in compute_rhs) we compute 1/u for every element. A few of
- // the corner elements are not used, but it convenient (and faster)
- // to compute the whole thing with a simple loop. Make sure those
- // values are nonzero by initializing the whole thing here.
- //---------------------------------------------------------------------
- for (c = 1; c <= ncells; c++) {
- for (kk = -1; kk <= KMAX; kk++) {
- for (jj = -1; jj <= JMAX; jj++) {
- for (ii = -1; ii <= IMAX; ii++) {
- for (m = 1; m <= 5; m++) {
- u(m, ii, jj, kk, c) = 1.0;
- }
- }
- }
- }
- }
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- // first store the "interpolated" values everywhere on the grid
- //---------------------------------------------------------------------
- for (c = 1; c <= ncells; c++) {
- kk = 0;
- for (k = cell_low(3,c); k <= cell_high(3,c); k++) {
- zeta = (double)(k) * dnzm1;
- jj = 0;
- for (j = cell_low(2,c); j <= cell_high(2,c); j++) {
- eta = (double)(j) * dnym1;
- ii = 0;
- for (i = cell_low(1,c); i <= cell_high(1,c); i++) {
- xi = (double)(i) * dnxm1;
-
- for (ix = 1; ix <= 2; ix++) {
- exact_solution((double)(ix-1), eta, zeta,
- &Pface(1,1,ix));
- }
- for (iy = 1; iy <= 2; iy++) {
- exact_solution(xi, (double)(iy-1) , zeta,
- &Pface(1,2,iy));
- }
- for (iz = 1; iz <= 2; iz++) {
- exact_solution(xi, eta, (double)(iz-1),
- &Pface(1,3,iz));
- }
- for (m = 1; m <= 5; m++) {
- Pxi = xi * Pface(m,1,2) +
- (1.0e0-xi) * Pface(m,1,1);
- Peta = eta * Pface(m,2,2) +
- (1.0e0-eta) * Pface(m,2,1);
- Pzeta = zeta * Pface(m,3,2) +
- (1.0e0-zeta) * Pface(m,3,1);
-
- u(m,ii,jj,kk,c) = Pxi + Peta + Pzeta -
- Pxi*Peta - Pxi*Pzeta - Peta*Pzeta +
- Pxi*Peta*Pzeta;
- }
- ii = ii + 1;
- }
- jj = jj + 1;
- }
- kk = kk+1;
- }
- }
- //---------------------------------------------------------------------
- // now store the exact values on the boundaries
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- // west face
- //---------------------------------------------------------------------
- c = slice(1,1);
- ii = 0;
- xi = 0.0e0;
- kk = 0;
- for (k = cell_low(3,c); k <= cell_high(3,c); k++) {
- zeta = (double)(k) * dnzm1;
- jj = 0;
- for (j = cell_low(2,c); j <= cell_high(2,c); j++) {
- eta = (double)(j) * dnym1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- jj = jj + 1;
- }
- kk = kk + 1;
- }
- //---------------------------------------------------------------------
- // east face
- //---------------------------------------------------------------------
- c = slice(1,ncells);
- ii = cell_size(1,c)-1;
- xi = 1.0e0;
- kk = 0;
- for (k = cell_low(3,c); k <= cell_high(3,c); k++) {
- zeta = (double)(k) * dnzm1;
- jj = 0;
- for (j = cell_low(2,c); j <= cell_high(2,c); j++) {
- eta = (double)(j) * dnym1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- jj = jj + 1;
- }
- kk = kk + 1;
- }
- //---------------------------------------------------------------------
- // south face
- //---------------------------------------------------------------------
- c = slice(2,1);
- jj = 0;
- eta = 0.0e0;
- kk = 0;
- for (k = cell_low(3,c); k <= cell_high(3,c); k++) {
- zeta = (double)(k) * dnzm1;
- ii = 0;
- for (i = cell_low(1,c); i <= cell_high(1,c); i++) {
- xi = (double)(i) * dnxm1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- ii = ii + 1;
- }
- kk = kk + 1;
- }
- //---------------------------------------------------------------------
- // north face
- //---------------------------------------------------------------------
- c = slice(2,ncells);
- jj = cell_size(2,c)-1;
- eta = 1.0e0;
- kk = 0;
- for (k = cell_low(3,c); k <= cell_high(3,c); k++) {
- zeta = (double)(k) * dnzm1;
- ii = 0;
- for (i = cell_low(1,c); i <= cell_high(1,c); i++) {
- xi = (double)(i) * dnxm1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- ii = ii + 1;
- }
- kk = kk + 1;
- }
- //---------------------------------------------------------------------
- // bottom face
- //---------------------------------------------------------------------
- c = slice(3,1);
- kk = 0;
- zeta = 0.0e0;
- jj = 0;
- for (j = cell_low(2,c); j <= cell_high(2,c); j++) {
- eta = (double)(j) * dnym1;
- ii = 0;
- for (i = cell_low(1,c); i <= cell_high(1,c); i++) {
- xi = (double)(i) *dnxm1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- ii = ii + 1;
- }
- jj = jj + 1;
- }
- //---------------------------------------------------------------------
- // top face
- //---------------------------------------------------------------------
- c = slice(3,ncells);
- kk = cell_size(3,c)-1;
- zeta = 1.0e0;
- jj = 0;
- for (j = cell_low(2,c); j <= cell_high(2,c); j++) {
- eta = (double)(j) * dnym1;
- ii = 0;
- for (i = cell_low(1,c); i <= cell_high(1,c); i++) {
- xi = (double)(i) * dnxm1;
- exact_solution(xi, eta, zeta, temp);
- for (m = 1; m <= 5; m++) {
- u(m,ii,jj,kk,c) = temp(m);
- }
- ii = ii + 1;
- }
- jj = jj + 1;
- }
- return;
- }
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- void lhsinit() {
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
-
- int i, j, k, d, c, m, n;
- //---------------------------------------------------------------------
- // loop over all cells
- //---------------------------------------------------------------------
- for (c = 1; c <= ncells; c++) {
- //---------------------------------------------------------------------
- // first, initialize the start and end arrays
- //---------------------------------------------------------------------
- for (d = 1; d <= 3; d++) {
- if (cell_coord(d,c) == 1) {
- start(d,c) = 1;
- } else {
- start(d,c) = 0;
- }
- if (cell_coord(d,c) == ncells) {
- end(d,c) = 1;
- } else {
- end(d,c) = 0;
- }
- }
- //---------------------------------------------------------------------
- // zero the whole left hand side for starters
- //---------------------------------------------------------------------
- for (k = 0; k <= cell_size(3,c)-1; k++) {
- for (j = 0; j <= cell_size(2,c)-1; j++) {
- for (i = 0; i <= cell_size(1,c)-1; i++) {
- for (m = 1; m <= 5; m++) {
- for (n = 1; n <= 5; n++) {
- lhsc(m,n,i,j,k,c) = 0.0e0;
- }
- }
- }
- }
- }
- }
- return;
- }
- //---------------------------------------------------------------------
- //---------------------------------------------------------------------
- void lhsabinit(double lhsa[], double lhsb[], int size) {
- #define lhsa(m,n,i) lhsa[(m-1)+5*((n-1)+5*(i+1))]
- #define lhsb(m,n,i) lhsb[(m-1)+5*((n-1)+5*(i+1))]
- int i, m, n;
- //---------------------------------------------------------------------
- // next, set all diagonal values to 1. This is overkill, but convenient
- //---------------------------------------------------------------------
- for (i = 0; i <= size; i++) {
- for (m = 1; m <= 5; m++) {
- for (n = 1; n <= 5; n++) {
- lhsa(m,n,i) = 0.0e0;
- lhsb(m,n,i) = 0.0e0;
- }
- lhsb(m,m,i) = 1.0e0;
- }
- }
- return;
- }
|