| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- /*
- * -- High Performance Computing Linpack Benchmark (HPL)
- * HPL - 2.0 - September 10, 2008
- * Antoine P. Petitet
- * University of Tennessee, Knoxville
- * Innovative Computing Laboratory
- * (C) Copyright 2000-2008 All Rights Reserved
- *
- * -- Copyright notice and Licensing terms:
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions, and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgement:
- * This product includes software developed at the University of
- * Tennessee, Knoxville, Innovative Computing Laboratory.
- *
- * 4. The name of the University, the name of the Laboratory, or the
- * names of its contributors may not be used to endorse or promote
- * products derived from this software without specific written
- * permission.
- *
- * -- Disclaimer:
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
- * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- * ---------------------------------------------------------------------
- */
- /*
- * Include files
- */
- #include "hpl.h"
- #ifdef STDC_HEADERS
- double HPL_dlange
- (
- const HPL_T_NORM NORM,
- const int M,
- const int N,
- const double * A,
- const int LDA
- )
- #else
- double HPL_dlange
- ( NORM, M, N, A, LDA )
- const HPL_T_NORM NORM;
- const int M;
- const int N;
- const double * A;
- const int LDA;
- #endif
- {
- /*
- * Purpose
- * =======
- *
- * HPL_dlange returns the value of the one norm, or the infinity norm,
- * or the element of largest absolute value of a matrix A:
- *
- * max(abs(A(i,j))) when NORM = HPL_NORM_A,
- * norm1(A), when NORM = HPL_NORM_1,
- * normI(A), when NORM = HPL_NORM_I,
- *
- * where norm1 denotes the one norm of a matrix (maximum column sum) and
- * normI denotes the infinity norm of a matrix (maximum row sum). Note
- * that max(abs(A(i,j))) is not a matrix norm.
- *
- * Arguments
- * =========
- *
- * NORM (local input) const HPL_T_NORM
- * On entry, NORM specifies the value to be returned by this
- * function as described above.
- *
- * M (local input) const int
- * On entry, M specifies the number of rows of the matrix A.
- * M must be at least zero.
- *
- * N (local input) const int
- * On entry, N specifies the number of columns of the matrix A.
- * N must be at least zero.
- *
- * A (local input) const double *
- * On entry, A points to an array of dimension (LDA,N), that
- * contains the matrix A.
- *
- * LDA (local input) const int
- * On entry, LDA specifies the leading dimension of the array A.
- * LDA must be at least max(1,M).
- *
- * ---------------------------------------------------------------------
- */
- /*
- * .. Local Variables ..
- */
- double s, v0=HPL_rzero, * work = NULL;
- int i, j;
- /* ..
- * .. Executable Statements ..
- */
- if( ( M <= 0 ) || ( N <= 0 ) ) return( HPL_rzero );
- if( NORM == HPL_NORM_A )
- {
- /*
- * max( abs( A ) )
- */
- for( j = 0; j < N; j++ )
- {
- for( i = 0; i < M; i++ ) { v0 = Mmax( v0, Mabs( *A ) ); A++; }
- A += LDA - M;
- }
- }
- else if( NORM == HPL_NORM_1 )
- {
- /*
- * Find norm_1( A ).
- */
- work = (double*)malloc( (size_t)(N) * sizeof( double ) );
- if( work == NULL )
- { HPL_abort( __LINE__, "HPL_dlange", "Memory allocation failed" ); }
- else
- {
- for( j = 0; j < N; j++ )
- {
- s = HPL_rzero;
- for( i = 0; i < M; i++ ) { s += Mabs( *A ); A++; }
- work[j] = s; A += LDA - M;
- }
- /*
- * Find maximum sum of columns for 1-norm
- */
- v0 = work[HPL_idamax( N, work, 1 )]; v0 = Mabs( v0 );
- if( work ) free( work );
- }
- }
- else if( NORM == HPL_NORM_I )
- {
- /*
- * Find norm_inf( A )
- */
- work = (double*)malloc( (size_t)(M) * sizeof( double ) );
- if( work == NULL )
- { HPL_abort( __LINE__, "HPL_dlange", "Memory allocation failed" ); }
- else
- {
- for( i = 0; i < M; i++ ) { work[i] = HPL_rzero; }
- for( j = 0; j < N; j++ )
- {
- for( i = 0; i < M; i++ ) { work[i] += Mabs( *A ); A++; }
- A += LDA - M;
- }
- /*
- * Find maximum sum of rows for inf-norm
- */
- v0 = work[HPL_idamax( M, work, 1 )]; v0 = Mabs( v0 );
- if( work ) free( work );
- }
- }
- return( v0 );
- /*
- * End of HPL_dlange
- */
- }
|